Delete unused LinkedHashTreeMap (#1992)

Class seems to be unused since commit f29d5bc37b.
Gson currently only uses LinkedTreeMap.
This commit is contained in:
Marcono1234 2021-11-01 23:09:14 +01:00 committed by GitHub
parent b4dab86b10
commit e0de45ff69
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 0 additions and 1184 deletions

View File

@ -1,872 +0,0 @@
/*
* Copyright (C) 2010 The Android Open Source Project
* Copyright (C) 2012 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.gson.internal;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.ObjectStreamException;
import java.io.Serializable;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.NoSuchElementException;
import java.util.Set;
/**
* A map of comparable keys to values. Unlike {@code TreeMap}, this class uses
* insertion order for iteration order. Comparison order is only used as an
* optimization for efficient insertion and removal.
*
* <p>This implementation was derived from Android 4.1's TreeMap and
* LinkedHashMap classes.
*/
public final class LinkedHashTreeMap<K, V> extends AbstractMap<K, V> implements Serializable {
@SuppressWarnings({ "unchecked", "rawtypes" }) // to avoid Comparable<Comparable<Comparable<...>>>
private static final Comparator<Comparable> NATURAL_ORDER = new Comparator<Comparable>() {
public int compare(Comparable a, Comparable b) {
return a.compareTo(b);
}
};
Comparator<? super K> comparator;
Node<K, V>[] table;
final Node<K, V> header;
int size = 0;
int modCount = 0;
int threshold;
/**
* Create a natural order, empty tree map whose keys must be mutually
* comparable and non-null.
*/
@SuppressWarnings("unchecked") // unsafe! this assumes K is comparable
public LinkedHashTreeMap() {
this((Comparator<? super K>) NATURAL_ORDER);
}
/**
* Create a tree map ordered by {@code comparator}. This map's keys may only
* be null if {@code comparator} permits.
*
* @param comparator the comparator to order elements with, or {@code null} to
* use the natural ordering.
*/
@SuppressWarnings({ "unchecked", "rawtypes" }) // unsafe! if comparator is null, this assumes K is comparable
public LinkedHashTreeMap(Comparator<? super K> comparator) {
this.comparator = comparator != null
? comparator
: (Comparator) NATURAL_ORDER;
this.header = new Node<K, V>();
this.table = new Node[16]; // TODO: sizing/resizing policies
this.threshold = (table.length / 2) + (table.length / 4); // 3/4 capacity
}
@Override public int size() {
return size;
}
@Override public V get(Object key) {
Node<K, V> node = findByObject(key);
return node != null ? node.value : null;
}
@Override public boolean containsKey(Object key) {
return findByObject(key) != null;
}
@Override public V put(K key, V value) {
if (key == null) {
throw new NullPointerException("key == null");
}
Node<K, V> created = find(key, true);
V result = created.value;
created.value = value;
return result;
}
@Override public void clear() {
Arrays.fill(table, null);
size = 0;
modCount++;
// Clear all links to help GC
Node<K, V> header = this.header;
for (Node<K, V> e = header.next; e != header; ) {
Node<K, V> next = e.next;
e.next = e.prev = null;
e = next;
}
header.next = header.prev = header;
}
@Override public V remove(Object key) {
Node<K, V> node = removeInternalByKey(key);
return node != null ? node.value : null;
}
/**
* Returns the node at or adjacent to the given key, creating it if requested.
*
* @throws ClassCastException if {@code key} and the tree's keys aren't
* mutually comparable.
*/
Node<K, V> find(K key, boolean create) {
Comparator<? super K> comparator = this.comparator;
Node<K, V>[] table = this.table;
int hash = secondaryHash(key.hashCode());
int index = hash & (table.length - 1);
Node<K, V> nearest = table[index];
int comparison = 0;
if (nearest != null) {
// Micro-optimization: avoid polymorphic calls to Comparator.compare().
@SuppressWarnings("unchecked") // Throws a ClassCastException below if there's trouble.
Comparable<Object> comparableKey = (comparator == NATURAL_ORDER)
? (Comparable<Object>) key
: null;
while (true) {
comparison = (comparableKey != null)
? comparableKey.compareTo(nearest.key)
: comparator.compare(key, nearest.key);
// We found the requested key.
if (comparison == 0) {
return nearest;
}
// If it exists, the key is in a subtree. Go deeper.
Node<K, V> child = (comparison < 0) ? nearest.left : nearest.right;
if (child == null) {
break;
}
nearest = child;
}
}
// The key doesn't exist in this tree.
if (!create) {
return null;
}
// Create the node and add it to the tree or the table.
Node<K, V> header = this.header;
Node<K, V> created;
if (nearest == null) {
// Check that the value is comparable if we didn't do any comparisons.
if (comparator == NATURAL_ORDER && !(key instanceof Comparable)) {
throw new ClassCastException(key.getClass().getName() + " is not Comparable");
}
created = new Node<K, V>(nearest, key, hash, header, header.prev);
table[index] = created;
} else {
created = new Node<K, V>(nearest, key, hash, header, header.prev);
if (comparison < 0) { // nearest.key is higher
nearest.left = created;
} else { // comparison > 0, nearest.key is lower
nearest.right = created;
}
rebalance(nearest, true);
}
if (size++ > threshold) {
doubleCapacity();
}
modCount++;
return created;
}
@SuppressWarnings("unchecked")
Node<K, V> findByObject(Object key) {
try {
return key != null ? find((K) key, false) : null;
} catch (ClassCastException e) {
return null;
}
}
/**
* Returns this map's entry that has the same key and value as {@code
* entry}, or null if this map has no such entry.
*
* <p>This method uses the comparator for key equality rather than {@code
* equals}. If this map's comparator isn't consistent with equals (such as
* {@code String.CASE_INSENSITIVE_ORDER}), then {@code remove()} and {@code
* contains()} will violate the collections API.
*/
Node<K, V> findByEntry(Entry<?, ?> entry) {
Node<K, V> mine = findByObject(entry.getKey());
boolean valuesEqual = mine != null && equal(mine.value, entry.getValue());
return valuesEqual ? mine : null;
}
private boolean equal(Object a, Object b) {
return a == b || (a != null && a.equals(b));
}
/**
* Applies a supplemental hash function to a given hashCode, which defends
* against poor quality hash functions. This is critical because HashMap
* uses power-of-two length hash tables, that otherwise encounter collisions
* for hashCodes that do not differ in lower or upper bits.
*/
private static int secondaryHash(int h) {
// Doug Lea's supplemental hash function
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* Removes {@code node} from this tree, rearranging the tree's structure as
* necessary.
*
* @param unlink true to also unlink this node from the iteration linked list.
*/
void removeInternal(Node<K, V> node, boolean unlink) {
if (unlink) {
node.prev.next = node.next;
node.next.prev = node.prev;
node.next = node.prev = null; // Help the GC (for performance)
}
Node<K, V> left = node.left;
Node<K, V> right = node.right;
Node<K, V> originalParent = node.parent;
if (left != null && right != null) {
/*
* To remove a node with both left and right subtrees, move an
* adjacent node from one of those subtrees into this node's place.
*
* Removing the adjacent node may change this node's subtrees. This
* node may no longer have two subtrees once the adjacent node is
* gone!
*/
Node<K, V> adjacent = (left.height > right.height) ? left.last() : right.first();
removeInternal(adjacent, false); // takes care of rebalance and size--
int leftHeight = 0;
left = node.left;
if (left != null) {
leftHeight = left.height;
adjacent.left = left;
left.parent = adjacent;
node.left = null;
}
int rightHeight = 0;
right = node.right;
if (right != null) {
rightHeight = right.height;
adjacent.right = right;
right.parent = adjacent;
node.right = null;
}
adjacent.height = Math.max(leftHeight, rightHeight) + 1;
replaceInParent(node, adjacent);
return;
} else if (left != null) {
replaceInParent(node, left);
node.left = null;
} else if (right != null) {
replaceInParent(node, right);
node.right = null;
} else {
replaceInParent(node, null);
}
rebalance(originalParent, false);
size--;
modCount++;
}
Node<K, V> removeInternalByKey(Object key) {
Node<K, V> node = findByObject(key);
if (node != null) {
removeInternal(node, true);
}
return node;
}
private void replaceInParent(Node<K, V> node, Node<K, V> replacement) {
Node<K, V> parent = node.parent;
node.parent = null;
if (replacement != null) {
replacement.parent = parent;
}
if (parent != null) {
if (parent.left == node) {
parent.left = replacement;
} else {
assert (parent.right == node);
parent.right = replacement;
}
} else {
int index = node.hash & (table.length - 1);
table[index] = replacement;
}
}
/**
* Rebalances the tree by making any AVL rotations necessary between the
* newly-unbalanced node and the tree's root.
*
* @param insert true if the node was unbalanced by an insert; false if it
* was by a removal.
*/
private void rebalance(Node<K, V> unbalanced, boolean insert) {
for (Node<K, V> node = unbalanced; node != null; node = node.parent) {
Node<K, V> left = node.left;
Node<K, V> right = node.right;
int leftHeight = left != null ? left.height : 0;
int rightHeight = right != null ? right.height : 0;
int delta = leftHeight - rightHeight;
if (delta == -2) {
Node<K, V> rightLeft = right.left;
Node<K, V> rightRight = right.right;
int rightRightHeight = rightRight != null ? rightRight.height : 0;
int rightLeftHeight = rightLeft != null ? rightLeft.height : 0;
int rightDelta = rightLeftHeight - rightRightHeight;
if (rightDelta == -1 || (rightDelta == 0 && !insert)) {
rotateLeft(node); // AVL right right
} else {
assert (rightDelta == 1);
rotateRight(right); // AVL right left
rotateLeft(node);
}
if (insert) {
break; // no further rotations will be necessary
}
} else if (delta == 2) {
Node<K, V> leftLeft = left.left;
Node<K, V> leftRight = left.right;
int leftRightHeight = leftRight != null ? leftRight.height : 0;
int leftLeftHeight = leftLeft != null ? leftLeft.height : 0;
int leftDelta = leftLeftHeight - leftRightHeight;
if (leftDelta == 1 || (leftDelta == 0 && !insert)) {
rotateRight(node); // AVL left left
} else {
assert (leftDelta == -1);
rotateLeft(left); // AVL left right
rotateRight(node);
}
if (insert) {
break; // no further rotations will be necessary
}
} else if (delta == 0) {
node.height = leftHeight + 1; // leftHeight == rightHeight
if (insert) {
break; // the insert caused balance, so rebalancing is done!
}
} else {
assert (delta == -1 || delta == 1);
node.height = Math.max(leftHeight, rightHeight) + 1;
if (!insert) {
break; // the height hasn't changed, so rebalancing is done!
}
}
}
}
/**
* Rotates the subtree so that its root's right child is the new root.
*/
private void rotateLeft(Node<K, V> root) {
Node<K, V> left = root.left;
Node<K, V> pivot = root.right;
Node<K, V> pivotLeft = pivot.left;
Node<K, V> pivotRight = pivot.right;
// move the pivot's left child to the root's right
root.right = pivotLeft;
if (pivotLeft != null) {
pivotLeft.parent = root;
}
replaceInParent(root, pivot);
// move the root to the pivot's left
pivot.left = root;
root.parent = pivot;
// fix heights
root.height = Math.max(left != null ? left.height : 0,
pivotLeft != null ? pivotLeft.height : 0) + 1;
pivot.height = Math.max(root.height,
pivotRight != null ? pivotRight.height : 0) + 1;
}
/**
* Rotates the subtree so that its root's left child is the new root.
*/
private void rotateRight(Node<K, V> root) {
Node<K, V> pivot = root.left;
Node<K, V> right = root.right;
Node<K, V> pivotLeft = pivot.left;
Node<K, V> pivotRight = pivot.right;
// move the pivot's right child to the root's left
root.left = pivotRight;
if (pivotRight != null) {
pivotRight.parent = root;
}
replaceInParent(root, pivot);
// move the root to the pivot's right
pivot.right = root;
root.parent = pivot;
// fixup heights
root.height = Math.max(right != null ? right.height : 0,
pivotRight != null ? pivotRight.height : 0) + 1;
pivot.height = Math.max(root.height,
pivotLeft != null ? pivotLeft.height : 0) + 1;
}
private EntrySet entrySet;
private KeySet keySet;
@Override public Set<Entry<K, V>> entrySet() {
EntrySet result = entrySet;
return result != null ? result : (entrySet = new EntrySet());
}
@Override public Set<K> keySet() {
KeySet result = keySet;
return result != null ? result : (keySet = new KeySet());
}
static final class Node<K, V> implements Entry<K, V> {
Node<K, V> parent;
Node<K, V> left;
Node<K, V> right;
Node<K, V> next;
Node<K, V> prev;
final K key;
final int hash;
V value;
int height;
/** Create the header entry */
Node() {
key = null;
hash = -1;
next = prev = this;
}
/** Create a regular entry */
Node(Node<K, V> parent, K key, int hash, Node<K, V> next, Node<K, V> prev) {
this.parent = parent;
this.key = key;
this.hash = hash;
this.height = 1;
this.next = next;
this.prev = prev;
prev.next = this;
next.prev = this;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
}
@SuppressWarnings("rawtypes")
@Override public boolean equals(Object o) {
if (o instanceof Entry) {
Entry other = (Entry) o;
return (key == null ? other.getKey() == null : key.equals(other.getKey()))
&& (value == null ? other.getValue() == null : value.equals(other.getValue()));
}
return false;
}
@Override public int hashCode() {
return (key == null ? 0 : key.hashCode())
^ (value == null ? 0 : value.hashCode());
}
@Override public String toString() {
return key + "=" + value;
}
/**
* Returns the first node in this subtree.
*/
public Node<K, V> first() {
Node<K, V> node = this;
Node<K, V> child = node.left;
while (child != null) {
node = child;
child = node.left;
}
return node;
}
/**
* Returns the last node in this subtree.
*/
public Node<K, V> last() {
Node<K, V> node = this;
Node<K, V> child = node.right;
while (child != null) {
node = child;
child = node.right;
}
return node;
}
}
private void doubleCapacity() {
table = doubleCapacity(table);
threshold = (table.length / 2) + (table.length / 4); // 3/4 capacity
}
/**
* Returns a new array containing the same nodes as {@code oldTable}, but with
* twice as many trees, each of (approximately) half the previous size.
*/
static <K, V> Node<K, V>[] doubleCapacity(Node<K, V>[] oldTable) {
// TODO: don't do anything if we're already at MAX_CAPACITY
int oldCapacity = oldTable.length;
@SuppressWarnings("unchecked") // Arrays and generics don't get along.
Node<K, V>[] newTable = new Node[oldCapacity * 2];
AvlIterator<K, V> iterator = new AvlIterator<K, V>();
AvlBuilder<K, V> leftBuilder = new AvlBuilder<K, V>();
AvlBuilder<K, V> rightBuilder = new AvlBuilder<K, V>();
// Split each tree into two trees.
for (int i = 0; i < oldCapacity; i++) {
Node<K, V> root = oldTable[i];
if (root == null) {
continue;
}
// Compute the sizes of the left and right trees.
iterator.reset(root);
int leftSize = 0;
int rightSize = 0;
for (Node<K, V> node; (node = iterator.next()) != null; ) {
if ((node.hash & oldCapacity) == 0) {
leftSize++;
} else {
rightSize++;
}
}
// Split the tree into two.
leftBuilder.reset(leftSize);
rightBuilder.reset(rightSize);
iterator.reset(root);
for (Node<K, V> node; (node = iterator.next()) != null; ) {
if ((node.hash & oldCapacity) == 0) {
leftBuilder.add(node);
} else {
rightBuilder.add(node);
}
}
// Populate the enlarged array with these new roots.
newTable[i] = leftSize > 0 ? leftBuilder.root() : null;
newTable[i + oldCapacity] = rightSize > 0 ? rightBuilder.root() : null;
}
return newTable;
}
/**
* Walks an AVL tree in iteration order. Once a node has been returned, its
* left, right and parent links are <strong>no longer used</strong>. For this
* reason it is safe to transform these links as you walk a tree.
*
* <p><strong>Warning:</strong> this iterator is destructive. It clears the
* parent node of all nodes in the tree. It is an error to make a partial
* iteration of a tree.
*/
static class AvlIterator<K, V> {
/** This stack is a singly linked list, linked by the 'parent' field. */
private Node<K, V> stackTop;
void reset(Node<K, V> root) {
Node<K, V> stackTop = null;
for (Node<K, V> n = root; n != null; n = n.left) {
n.parent = stackTop;
stackTop = n; // Stack push.
}
this.stackTop = stackTop;
}
public Node<K, V> next() {
Node<K, V> stackTop = this.stackTop;
if (stackTop == null) {
return null;
}
Node<K, V> result = stackTop;
stackTop = result.parent;
result.parent = null;
for (Node<K, V> n = result.right; n != null; n = n.left) {
n.parent = stackTop;
stackTop = n; // Stack push.
}
this.stackTop = stackTop;
return result;
}
}
/**
* Builds AVL trees of a predetermined size by accepting nodes of increasing
* value. To use:
* <ol>
* <li>Call {@link #reset} to initialize the target size <i>size</i>.
* <li>Call {@link #add} <i>size</i> times with increasing values.
* <li>Call {@link #root} to get the root of the balanced tree.
* </ol>
*
* <p>The returned tree will satisfy the AVL constraint: for every node
* <i>N</i>, the height of <i>N.left</i> and <i>N.right</i> is different by at
* most 1. It accomplishes this by omitting deepest-level leaf nodes when
* building trees whose size isn't a power of 2 minus 1.
*
* <p>Unlike rebuilding a tree from scratch, this approach requires no value
* comparisons. Using this class to create a tree of size <i>S</i> is
* {@code O(S)}.
*/
final static class AvlBuilder<K, V> {
/** This stack is a singly linked list, linked by the 'parent' field. */
private Node<K, V> stack;
private int leavesToSkip;
private int leavesSkipped;
private int size;
void reset(int targetSize) {
// compute the target tree size. This is a power of 2 minus one, like 15 or 31.
int treeCapacity = Integer.highestOneBit(targetSize) * 2 - 1;
leavesToSkip = treeCapacity - targetSize;
size = 0;
leavesSkipped = 0;
stack = null;
}
void add(Node<K, V> node) {
node.left = node.parent = node.right = null;
node.height = 1;
// Skip a leaf if necessary.
if (leavesToSkip > 0 && (size & 1) == 0) {
size++;
leavesToSkip--;
leavesSkipped++;
}
node.parent = stack;
stack = node; // Stack push.
size++;
// Skip a leaf if necessary.
if (leavesToSkip > 0 && (size & 1) == 0) {
size++;
leavesToSkip--;
leavesSkipped++;
}
/*
* Combine 3 nodes into subtrees whenever the size is one less than a
* multiple of 4. For example we combine the nodes A, B, C into a
* 3-element tree with B as the root.
*
* Combine two subtrees and a spare single value whenever the size is one
* less than a multiple of 8. For example at 8 we may combine subtrees
* (A B C) and (E F G) with D as the root to form ((A B C) D (E F G)).
*
* Just as we combine single nodes when size nears a multiple of 4, and
* 3-element trees when size nears a multiple of 8, we combine subtrees of
* size (N-1) whenever the total size is 2N-1 whenever N is a power of 2.
*/
for (int scale = 4; (size & scale - 1) == scale - 1; scale *= 2) {
if (leavesSkipped == 0) {
// Pop right, center and left, then make center the top of the stack.
Node<K, V> right = stack;
Node<K, V> center = right.parent;
Node<K, V> left = center.parent;
center.parent = left.parent;
stack = center;
// Construct a tree.
center.left = left;
center.right = right;
center.height = right.height + 1;
left.parent = center;
right.parent = center;
} else if (leavesSkipped == 1) {
// Pop right and center, then make center the top of the stack.
Node<K, V> right = stack;
Node<K, V> center = right.parent;
stack = center;
// Construct a tree with no left child.
center.right = right;
center.height = right.height + 1;
right.parent = center;
leavesSkipped = 0;
} else if (leavesSkipped == 2) {
leavesSkipped = 0;
}
}
}
Node<K, V> root() {
Node<K, V> stackTop = this.stack;
if (stackTop.parent != null) {
throw new IllegalStateException();
}
return stackTop;
}
}
private abstract class LinkedTreeMapIterator<T> implements Iterator<T> {
Node<K, V> next = header.next;
Node<K, V> lastReturned = null;
int expectedModCount = modCount;
LinkedTreeMapIterator() {
}
public final boolean hasNext() {
return next != header;
}
final Node<K, V> nextNode() {
Node<K, V> e = next;
if (e == header) {
throw new NoSuchElementException();
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
next = e.next;
return lastReturned = e;
}
public final void remove() {
if (lastReturned == null) {
throw new IllegalStateException();
}
removeInternal(lastReturned, true);
lastReturned = null;
expectedModCount = modCount;
}
}
final class EntrySet extends AbstractSet<Entry<K, V>> {
@Override public int size() {
return size;
}
@Override public Iterator<Entry<K, V>> iterator() {
return new LinkedTreeMapIterator<Entry<K, V>>() {
public Entry<K, V> next() {
return nextNode();
}
};
}
@Override public boolean contains(Object o) {
return o instanceof Entry && findByEntry((Entry<?, ?>) o) != null;
}
@Override public boolean remove(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Node<K, V> node = findByEntry((Entry<?, ?>) o);
if (node == null) {
return false;
}
removeInternal(node, true);
return true;
}
@Override public void clear() {
LinkedHashTreeMap.this.clear();
}
}
final class KeySet extends AbstractSet<K> {
@Override public int size() {
return size;
}
@Override public Iterator<K> iterator() {
return new LinkedTreeMapIterator<K>() {
public K next() {
return nextNode().key;
}
};
}
@Override public boolean contains(Object o) {
return containsKey(o);
}
@Override public boolean remove(Object key) {
return removeInternalByKey(key) != null;
}
@Override public void clear() {
LinkedHashTreeMap.this.clear();
}
}
/**
* If somebody is unlucky enough to have to serialize one of these, serialize
* it as a LinkedHashMap so that they won't need Gson on the other side to
* deserialize it. Using serialization defeats our DoS defence, so most apps
* shouldn't use it.
*/
private Object writeReplace() throws ObjectStreamException {
return new LinkedHashMap<K, V>(this);
}
private void readObject(ObjectInputStream in) throws IOException {
// Don't permit directly deserializing this class; writeReplace() should have written a replacement
throw new InvalidObjectException("Deserialization is unsupported");
}
}

View File

@ -1,312 +0,0 @@
/*
* Copyright (C) 2012 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.gson.internal;
import com.google.gson.common.MoreAsserts;
import com.google.gson.internal.LinkedHashTreeMap.AvlBuilder;
import com.google.gson.internal.LinkedHashTreeMap.AvlIterator;
import com.google.gson.internal.LinkedHashTreeMap.Node;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import junit.framework.TestCase;
public final class LinkedHashTreeMapTest extends TestCase {
public void testIterationOrder() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
map.put("a", "android");
map.put("c", "cola");
map.put("b", "bbq");
assertIterationOrder(map.keySet(), "a", "c", "b");
assertIterationOrder(map.values(), "android", "cola", "bbq");
}
public void testRemoveRootDoesNotDoubleUnlink() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
map.put("a", "android");
map.put("c", "cola");
map.put("b", "bbq");
Iterator<Map.Entry<String,String>> it = map.entrySet().iterator();
it.next();
it.next();
it.next();
it.remove();
assertIterationOrder(map.keySet(), "a", "c");
}
public void testPutNullKeyFails() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
try {
map.put(null, "android");
fail();
} catch (NullPointerException expected) {
}
}
public void testPutNonComparableKeyFails() {
LinkedHashTreeMap<Object, String> map = new LinkedHashTreeMap<Object, String>();
try {
map.put(new Object(), "android");
fail();
} catch (ClassCastException expected) {}
}
public void testContainsNonComparableKeyReturnsFalse() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
map.put("a", "android");
assertFalse(map.containsKey(new Object()));
}
public void testContainsNullKeyIsAlwaysFalse() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
map.put("a", "android");
assertFalse(map.containsKey(null));
}
public void testPutOverrides() throws Exception {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
assertNull(map.put("d", "donut"));
assertNull(map.put("e", "eclair"));
assertNull(map.put("f", "froyo"));
assertEquals(3, map.size());
assertEquals("donut", map.get("d"));
assertEquals("donut", map.put("d", "done"));
assertEquals(3, map.size());
}
public void testEmptyStringValues() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
map.put("a", "");
assertTrue(map.containsKey("a"));
assertEquals("", map.get("a"));
}
// NOTE that this does not happen every time, but given the below predictable random,
// this test will consistently fail (assuming the initial size is 16 and rehashing
// size remains at 3/4)
public void testForceDoublingAndRehash() throws Exception {
Random random = new Random(1367593214724L);
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
String[] keys = new String[1000];
for (int i = 0; i < keys.length; i++) {
keys[i] = Integer.toString(Math.abs(random.nextInt()), 36) + "-" + i;
map.put(keys[i], "" + i);
}
for (int i = 0; i < keys.length; i++) {
String key = keys[i];
assertTrue(map.containsKey(key));
assertEquals("" + i, map.get(key));
}
}
public void testClear() {
LinkedHashTreeMap<String, String> map = new LinkedHashTreeMap<String, String>();
map.put("a", "android");
map.put("c", "cola");
map.put("b", "bbq");
map.clear();
assertIterationOrder(map.keySet());
assertEquals(0, map.size());
}
public void testEqualsAndHashCode() throws Exception {
LinkedHashTreeMap<String, Integer> map1 = new LinkedHashTreeMap<String, Integer>();
map1.put("A", 1);
map1.put("B", 2);
map1.put("C", 3);
map1.put("D", 4);
LinkedHashTreeMap<String, Integer> map2 = new LinkedHashTreeMap<String, Integer>();
map2.put("C", 3);
map2.put("B", 2);
map2.put("D", 4);
map2.put("A", 1);
MoreAsserts.assertEqualsAndHashCode(map1, map2);
}
public void testAvlWalker() {
assertAvlWalker(node(node("a"), "b", node("c")),
"a", "b", "c");
assertAvlWalker(node(node(node("a"), "b", node("c")), "d", node(node("e"), "f", node("g"))),
"a", "b", "c", "d", "e", "f", "g");
assertAvlWalker(node(node(null, "a", node("b")), "c", node(node("d"), "e", null)),
"a", "b", "c", "d", "e");
assertAvlWalker(node(null, "a", node(null, "b", node(null, "c", node("d")))),
"a", "b", "c", "d");
assertAvlWalker(node(node(node(node("a"), "b", null), "c", null), "d", null),
"a", "b", "c", "d");
}
private void assertAvlWalker(Node<String, String> root, String... values) {
AvlIterator<String, String> iterator = new AvlIterator<String, String>();
iterator.reset(root);
for (String value : values) {
assertEquals(value, iterator.next().getKey());
}
assertNull(iterator.next());
}
public void testAvlBuilder() {
assertAvlBuilder(1, "a");
assertAvlBuilder(2, "(. a b)");
assertAvlBuilder(3, "(a b c)");
assertAvlBuilder(4, "(a b (. c d))");
assertAvlBuilder(5, "(a b (c d e))");
assertAvlBuilder(6, "((. a b) c (d e f))");
assertAvlBuilder(7, "((a b c) d (e f g))");
assertAvlBuilder(8, "((a b c) d (e f (. g h)))");
assertAvlBuilder(9, "((a b c) d (e f (g h i)))");
assertAvlBuilder(10, "((a b c) d ((. e f) g (h i j)))");
assertAvlBuilder(11, "((a b c) d ((e f g) h (i j k)))");
assertAvlBuilder(12, "((a b (. c d)) e ((f g h) i (j k l)))");
assertAvlBuilder(13, "((a b (c d e)) f ((g h i) j (k l m)))");
assertAvlBuilder(14, "(((. a b) c (d e f)) g ((h i j) k (l m n)))");
assertAvlBuilder(15, "(((a b c) d (e f g)) h ((i j k) l (m n o)))");
assertAvlBuilder(16, "(((a b c) d (e f g)) h ((i j k) l (m n (. o p))))");
assertAvlBuilder(30, "((((. a b) c (d e f)) g ((h i j) k (l m n))) o "
+ "(((p q r) s (t u v)) w ((x y z) A (B C D))))");
assertAvlBuilder(31, "((((a b c) d (e f g)) h ((i j k) l (m n o))) p "
+ "(((q r s) t (u v w)) x ((y z A) B (C D E))))");
}
private void assertAvlBuilder(int size, String expected) {
char[] values = "abcdefghijklmnopqrstuvwxyzABCDE".toCharArray();
AvlBuilder<String, String> avlBuilder = new AvlBuilder<String, String>();
avlBuilder.reset(size);
for (int i = 0; i < size; i++) {
avlBuilder.add(node(Character.toString(values[i])));
}
assertTree(expected, avlBuilder.root());
}
public void testDoubleCapacity() {
@SuppressWarnings("unchecked") // Arrays and generics don't get along.
Node<String, String>[] oldTable = new Node[1];
oldTable[0] = node(node(node("a"), "b", node("c")), "d", node(node("e"), "f", node("g")));
Node<String, String>[] newTable = LinkedHashTreeMap.doubleCapacity(oldTable);
assertTree("(b d f)", newTable[0]); // Even hash codes!
assertTree("(a c (. e g))", newTable[1]); // Odd hash codes!
}
public void testDoubleCapacityAllNodesOnLeft() {
@SuppressWarnings("unchecked") // Arrays and generics don't get along.
Node<String, String>[] oldTable = new Node[1];
oldTable[0] = node(node("b"), "d", node("f"));
Node<String, String>[] newTable = LinkedHashTreeMap.doubleCapacity(oldTable);
assertTree("(b d f)", newTable[0]); // Even hash codes!
assertNull(newTable[1]); // Odd hash codes!
for (Node<?, ?> node : newTable) {
if (node != null) {
assertConsistent(node);
}
}
}
public void testJavaSerialization() throws IOException, ClassNotFoundException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
ObjectOutputStream objOut = new ObjectOutputStream(out);
Map<String, Integer> map = new LinkedHashTreeMap<String, Integer>();
map.put("a", 1);
objOut.writeObject(map);
objOut.close();
ObjectInputStream objIn = new ObjectInputStream(new ByteArrayInputStream(out.toByteArray()));
@SuppressWarnings("unchecked")
Map<String, Integer> deserialized = (Map<String, Integer>) objIn.readObject();
assertEquals(Collections.singletonMap("a", 1), deserialized);
}
private static final Node<String, String> head = new Node<String, String>();
private Node<String, String> node(String value) {
return new Node<String, String>(null, value, value.hashCode(), head, head);
}
private Node<String, String> node(Node<String, String> left, String value,
Node<String, String> right) {
Node<String, String> result = node(value);
if (left != null) {
result.left = left;
left.parent = result;
}
if (right != null) {
result.right = right;
right.parent = result;
}
return result;
}
private void assertTree(String expected, Node<?, ?> root) {
assertEquals(expected, toString(root));
assertConsistent(root);
}
private void assertConsistent(Node<?, ?> node) {
int leftHeight = 0;
if (node.left != null) {
assertConsistent(node.left);
assertSame(node, node.left.parent);
leftHeight = node.left.height;
}
int rightHeight = 0;
if (node.right != null) {
assertConsistent(node.right);
assertSame(node, node.right.parent);
rightHeight = node.right.height;
}
if (node.parent != null) {
assertTrue(node.parent.left == node || node.parent.right == node);
}
if (Math.max(leftHeight, rightHeight) + 1 != node.height) {
fail();
}
}
private String toString(Node<?, ?> root) {
if (root == null) {
return ".";
} else if (root.left == null && root.right == null) {
return String.valueOf(root.key);
} else {
return String.format("(%s %s %s)", toString(root.left), root.key, toString(root.right));
}
}
@SafeVarargs
private <T> void assertIterationOrder(Iterable<T> actual, T... expected) {
ArrayList<T> actualList = new ArrayList<T>();
for (T t : actual) {
actualList.add(t);
}
assertEquals(Arrays.asList(expected), actualList);
}
}