ISO/default-config/boot/help/grub.txt

4221 lines
160 KiB
Plaintext
Raw Normal View History

Table of Contents
*****************
GNU GRUB manual
1 Introduction to GRUB
1.1 Overview
1.2 History of GRUB
1.3 GRUB features
1.4 The role of a boot loader
2 Naming convention
3 Installation
3.1 Creating a GRUB boot floppy
3.2 Installing GRUB natively
3.3 Installing GRUB using grub-install
3.4 Making a GRUB bootable CD-ROM
4 Booting
4.1 How to boot operating systems
4.1.1 How to boot an OS directly with GRUB
4.1.2 Load another boot loader to boot unsupported operating systems
4.2 Some caveats on OS-specific issues
4.2.1 GNU/Hurd
4.2.2 GNU/Linux
4.2.3 FreeBSD
4.2.4 NetBSD
4.2.5 OpenBSD
4.2.6 DOS/Windows
4.2.7 SCO UnixWare
4.2.8 QNX
4.3 How to make your system robust
4.3.1 Booting once-only
4.3.2 Booting fallback systems
5 Configuration
6 Downloading OS images from a network
6.1 How to set up your network
6.2 Booting from a network
7 Using GRUB via a serial line
8 Embedding a configuration file into GRUB
9 Protecting your computer from cracking
10 GRUB image files
11 Filesystem syntax and semantics
11.1 How to specify devices
11.2 How to specify files
11.3 How to specify block lists
12 GRUB's user interface
12.1 The flexible command-line interface
12.2 The simple menu interface
12.3 Editing a menu entry
12.4 The hidden menu interface
13 The list of available commands
13.1 The list of commands for the menu only
13.1.1 default
13.1.2 fallback
13.1.3 hiddenmenu
13.1.4 timeout
13.1.5 title
13.2 The list of general commands
13.2.1 bootp
13.2.2 color
13.2.3 device
13.2.4 dhcp
13.2.5 hide
13.2.6 ifconfig
13.2.7 pager
13.2.8 partnew
13.2.9 parttype
13.2.10 password
13.2.11 rarp
13.2.12 serial
13.2.13 setkey
13.2.14 terminal
13.2.15 terminfo
13.2.16 tftpserver
13.2.17 unhide
13.3 The list of command-line and menu entry commands
13.3.1 blocklist
13.3.2 boot
13.3.3 cat
13.3.4 chainloader
13.3.5 cmp
13.3.6 configfile
13.3.7 debug
13.3.8 displayapm
13.3.9 displaymem
13.3.10 embed
13.3.11 find
13.3.12 fstest
13.3.13 geometry
13.3.14 halt
13.3.15 help
13.3.16 impsprobe
13.3.17 initrd
13.3.18 install
13.3.19 ioprobe
13.3.20 kernel
13.3.21 lock
13.3.22 makeactive
13.3.23 map
13.3.24 md5crypt
13.3.25 module
13.3.26 modulenounzip
13.3.27 pause
13.3.28 quit
13.3.29 reboot
13.3.30 read
13.3.31 root
13.3.32 rootnoverify
13.3.33 savedefault
13.3.34 setup
13.3.35 testload
13.3.36 testvbe
13.3.37 uppermem
13.3.38 vbeprobe
14 Error messages reported by GRUB
14.1 Errors reported by the Stage 1
14.2 Errors reported by the Stage 1.5
14.3 Errors reported by the Stage 2
15 Invoking the grub shell
15.1 Introduction into the grub shell
15.2 How to install GRUB via `grub'
15.3 The map between BIOS drives and OS devices
16 Invoking grub-install
17 Invoking grub-md5-crypt
18 Invoking grub-terminfo
19 Invoking grub-set-default
20 Invoking mbchk
Appendix A How to obtain and build GRUB
Appendix B Reporting bugs
Appendix C Where GRUB will go
Appendix D Hacking GRUB
D.1 The memory map of various components
D.2 Embedded variables in GRUB
D.3 The generic interface for filesystems
D.4 The generic interface for built-ins
D.5 The bootstrap mechanism used in GRUB
D.6 How to probe I/O ports used by INT 13H
D.7 How to detect all installed RAM
D.8 INT 13H disk I/O interrupts
D.9 The structure of Master Boot Record
D.10 The format of partition tables
D.11 Where and how you should send patches
Appendix E Copying This Manual
E.1 GNU Free Documentation License
E.1.1 ADDENDUM: How to use this License for your documents
Index
GNU GRUB manual
***************
This is the documentation of GNU GRUB, the GRand Unified Bootloader, a
flexible and powerful boot loader program for PCs.
This edition documents version 0.97.
This manual is for GNU GRUB (version 0.97, 8 May 2005).
Copyright (C) 1999,2000,2001,2002,2004,2006 Free Software
Foundation, Inc.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover Texts
being "A GNU Manual," and with the Back-Cover Texts as in (a)
below. A copy of the license is included in the section entitled
"GNU Free Documentation License."
(a) The FSF's Back-Cover Text is: "You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by
the Free Software Foundation raise funds for GNU development."
1 Introduction to GRUB
**********************
1.1 Overview
============
Briefly, a "boot loader" is the first software program that runs when a
computer starts. It is responsible for loading and transferring
control to an operating system "kernel" software (such as Linux or GNU
Mach). The kernel, in turn, initializes the rest of the operating
system (e.g. a GNU system).
GNU GRUB is a very powerful boot loader, which can load a wide
variety of free operating systems, as well as proprietary operating
systems with chain-loading(1) (*note Overview-Footnote-1::). GRUB is
designed to address the complexity of booting a personal computer; both
the program and this manual are tightly bound to that computer platform,
although porting to other platforms may be addressed in the future.
One of the important features in GRUB is flexibility; GRUB
understands filesystems and kernel executable formats, so you can load
an arbitrary operating system the way you like, without recording the
physical position of your kernel on the disk. Thus you can load the
kernel just by specifying its file name and the drive and partition
where the kernel resides.
When booting with GRUB, you can use either a command-line interface
(*note Command-line interface::), or a menu interface (*note Menu
interface::). Using the command-line interface, you type the drive
specification and file name of the kernel manually. In the menu
interface, you just select an OS using the arrow keys. The menu is
based on a configuration file which you prepare beforehand (*note
Configuration::). While in the menu, you can switch to the command-line
mode, and vice-versa. You can even edit menu entries before using them.
In the following chapters, you will learn how to specify a drive, a
partition, and a file name (*note Naming convention::) to GRUB, how to
install GRUB on your drive (*note Installation::), and how to boot your
OSes (*note Booting::), step by step.
Besides the GRUB boot loader itself, there is a "grub shell" `grub'
(*note Invoking the grub shell::) which can be run when you are in your
operating system. It emulates the boot loader and can be used for
installing the boot loader.
(1) "chain-load" is the mechanism for loading unsupported operating
systems by loading another boot loader. It is typically used for
loading DOS or Windows.
1.2 History of GRUB
===================
GRUB originated in 1995 when Erich Boleyn was trying to boot the GNU
Hurd with the University of Utah's Mach 4 microkernel (now known as GNU
Mach). Erich and Brian Ford designed the Multiboot Specification
(*note Multiboot Specification: (multiboot)Top.), because they were
determined not to add to the large number of mutually-incompatible PC
boot methods.
Erich then began modifying the FreeBSD boot loader so that it would
understand Multiboot. He soon realized that it would be a lot easier to
write his own boot loader from scratch than to keep working on the
FreeBSD boot loader, and so GRUB was born.
Erich added many features to GRUB, but other priorities prevented him
from keeping up with the demands of its quickly-expanding user base. In
1999, Gordon Matzigkeit and Yoshinori K. Okuji adopted GRUB as an
official GNU package, and opened its development by making the latest
sources available via anonymous CVS. *Note Obtaining and Building
GRUB::, for more information.
1.3 GRUB features
=================
The primary requirement for GRUB is that it be compliant with the
"Multiboot Specification", which is described in *Note Multiboot
Specification: (multiboot)Top.
The other goals, listed in approximate order of importance, are:
* Basic functions must be straightforward for end-users.
* Rich functionality to support kernel experts and designers.
* Backward compatibility for booting FreeBSD, NetBSD, OpenBSD, and
Linux. Proprietary kernels (such as DOS, Windows NT, and OS/2) are
supported via a chain-loading function.
Except for specific compatibility modes (chain-loading and the Linux
"piggyback" format), all kernels will be started in much the same state
as in the Multiboot Specification. Only kernels loaded at 1 megabyte or
above are presently supported. Any attempt to load below that boundary
will simply result in immediate failure and an error message reporting
the problem.
In addition to the requirements above, GRUB has the following
features (note that the Multiboot Specification doesn't require all the
features that GRUB supports):
Recognize multiple executable formats
Support many of the "a.out" variants plus "ELF". Symbol tables are
also loaded.
Support non-Multiboot kernels
Support many of the various free 32-bit kernels that lack Multiboot
compliance (primarily FreeBSD, NetBSD, OpenBSD, and Linux).
Chain-loading of other boot loaders is also supported.
Load multiples modules
Fully support the Multiboot feature of loading multiple modules.
Load a configuration file
Support a human-readable text configuration file with preset boot
commands. You can also load another configuration file dynamically
and embed a preset configuration file in a GRUB image file. The
list of commands (*note Commands::) are a superset of those
supported on the command-line. An example configuration file is
provided in *Note Configuration::.
Provide a menu interface
A menu interface listing preset boot commands, with a programmable
timeout, is available. There is no fixed limit on the number of
boot entries, and the current implementation has space for several
hundred.
Have a flexible command-line interface
A fairly flexible command-line interface, accessible from the menu,
is available to edit any preset commands, or write a new boot
command set from scratch. If no configuration file is present,
GRUB drops to the command-line.
The list of commands (*note Commands::) are a subset of those
supported for configuration files. Editing commands closely
resembles the Bash command-line (*note Bash: (features)Command
Line Editing.), with <TAB>-completion of commands, devices,
partitions, and files in a directory depending on context.
Support multiple filesystem types
Support multiple filesystem types transparently, plus a useful
explicit blocklist notation. The currently supported filesystem
types are "BSD FFS", "DOS FAT16 and FAT32", "Minix fs", "Linux
ext2fs", "ReiserFS", "JFS", "XFS", and "VSTa fs". *Note
Filesystem::, for more information.
Support automatic decompression
Can decompress files which were compressed by `gzip'. This
function is both automatic and transparent to the user (i.e. all
functions operate upon the uncompressed contents of the specified
files). This greatly reduces a file size and loading time, a
particularly great benefit for floppies.(1) (*note
Features-Footnote-1::)
It is conceivable that some kernel modules should be loaded in a
compressed state, so a different module-loading command can be
specified to avoid uncompressing the modules.
Access data on any installed device
Support reading data from any or all floppies or hard disk(s)
recognized by the BIOS, independent of the setting of the root
device.
Be independent of drive geometry translations
Unlike many other boot loaders, GRUB makes the particular drive
translation irrelevant. A drive installed and running with one
translation may be converted to another translation without any
adverse effects or changes in GRUB's configuration.
Detect all installed RAM
GRUB can generally find all the installed RAM on a PC-compatible
machine. It uses an advanced BIOS query technique for finding all
memory regions. As described on the Multiboot Specification (*note
Multiboot Specification: (multiboot)Top.), not all kernels make
use of this information, but GRUB provides it for those who do.
Support Logical Block Address mode
In traditional disk calls (called "CHS mode"), there is a geometry
translation problem, that is, the BIOS cannot access over 1024
cylinders, so the accessible space is limited to at least 508 MB
and to at most 8GB. GRUB can't universally solve this problem, as
there is no standard interface used in all machines. However,
several newer machines have the new interface, Logical Block
Address ("LBA") mode. GRUB automatically detects if LBA mode is
available and uses it if available. In LBA mode, GRUB can access
the entire disk.
Support network booting
GRUB is basically a disk-based boot loader but also has network
support. You can load OS images from a network by using the "TFTP"
protocol.
Support remote terminals
To support computers with no console, GRUB provides remote terminal
support, so that you can control GRUB from a remote host. Only
serial terminal support is implemented at the moment.
(1) There are a few pathological cases where loading a very badly
organized ELF kernel might take longer, but in practice this never
happen.
1.4 The role of a boot loader
=============================
The following is a quotation from Gordon Matzigkeit, a GRUB fanatic:
Some people like to acknowledge both the operating system and
kernel when they talk about their computers, so they might say
they use "GNU/Linux" or "GNU/Hurd". Other people seem to think
that the kernel is the most important part of the system, so they
like to call their GNU operating systems "Linux systems."
I, personally, believe that this is a grave injustice, because the
_boot loader_ is the most important software of all. I used to
refer to the above systems as either "LILO"(1) (*note Role of a
boot loader-Footnote-1::) or "GRUB" systems.
Unfortunately, nobody ever understood what I was talking about;
now I just use the word "GNU" as a pseudonym for GRUB.
So, if you ever hear people talking about their alleged "GNU"
systems, remember that they are actually paying homage to the best
boot loader around... GRUB!
We, the GRUB maintainers, do not (usually) encourage Gordon's level
of fanaticism, but it helps to remember that boot loaders deserve
recognition. We hope that you enjoy using GNU GRUB as much as we did
writing it.
(1) The LInux LOader, a boot loader that everybody uses, but nobody
likes.
2 Naming convention
*******************
The device syntax used in GRUB is a wee bit different from what you may
have seen before in your operating system(s), and you need to know it so
that you can specify a drive/partition.
Look at the following examples and explanations:
(fd0)
First of all, GRUB requires that the device name be enclosed with
`(' and `)'. The `fd' part means that it is a floppy disk. The number
`0' is the drive number, which is counted from _zero_. This expression
means that GRUB will use the whole floppy disk.
(hd0,1)
Here, `hd' means it is a hard disk drive. The first integer `0'
indicates the drive number, that is, the first hard disk, while the
second integer, `1', indicates the partition number (or the PC slice
number in the BSD terminology). Once again, please note that the
partition numbers are counted from _zero_, not from one. This
expression means the second partition of the first hard disk drive. In
this case, GRUB uses one partition of the disk, instead of the whole
disk.
(hd0,4)
This specifies the first "extended partition" of the first hard disk
drive. Note that the partition numbers for extended partitions are
counted from `4', regardless of the actual number of primary partitions
on your hard disk.
(hd1,a)
This means the BSD `a' partition of the second hard disk. If you
need to specify which PC slice number should be used, use something
like this: `(hd1,0,a)'. If the PC slice number is omitted, GRUB
searches for the first PC slice which has a BSD `a' partition.
Of course, to actually access the disks or partitions with GRUB, you
need to use the device specification in a command, like `root (fd0)' or
`unhide (hd0,2)'. To help you find out which number specifies a
partition you want, the GRUB command-line (*note Command-line
interface::) options have argument completion. This means that, for
example, you only need to type
root (
followed by a <TAB>, and GRUB will display the list of drives,
partitions, or file names. So it should be quite easy to determine the
name of your target partition, even with minimal knowledge of the
syntax.
Note that GRUB does _not_ distinguish IDE from SCSI - it simply
counts the drive numbers from zero, regardless of their type. Normally,
any IDE drive number is less than any SCSI drive number, although that
is not true if you change the boot sequence by swapping IDE and SCSI
drives in your BIOS.
Now the question is, how to specify a file? Again, consider an
example:
(hd0,0)/vmlinuz
This specifies the file named `vmlinuz', found on the first
partition of the first hard disk drive. Note that the argument
completion works with file names, too.
That was easy, admit it. Now read the next chapter, to find out how
to actually install GRUB on your drive.
3 Installation
**************
In order to install GRUB as your boot loader, you need to first install
the GRUB system and utilities under your UNIX-like operating system
(*note Obtaining and Building GRUB::). You can do this either from the
source tarball, or as a package for your OS.
After you have done that, you need to install the boot loader on a
drive (floppy or hard disk). There are two ways of doing that - either
using the utility `grub-install' (*note Invoking grub-install::) on a
UNIX-like OS, or by running GRUB itself from a floppy. These are quite
similar, however the utility might probe a wrong BIOS drive, so you
should be careful.
Also, if you install GRUB on a UNIX-like OS, please make sure that
you have an emergency boot disk ready, so that you can rescue your
computer if, by any chance, your hard drive becomes unusable
(unbootable).
GRUB comes with boot images, which are normally put in the directory
`/usr/lib/grub/i386-pc'. If you do not use grub-install, then you need
to copy the files `stage1', `stage2', and `*stage1_5' to the directory
`/boot/grub', and run the `grub-set-default' (*note Invoking
grub-set-default::) if you intend to use `default saved' (*note
default::) in your configuration file. Hereafter, the directory where
GRUB images are initially placed (normally `/usr/lib/grub/i386-pc')
will be called the "image directory", and the directory where the boot
loader needs to find them (usually `/boot/grub') will be called the
"boot directory".
3.1 Creating a GRUB boot floppy
===============================
To create a GRUB boot floppy, you need to take the files `stage1' and
`stage2' from the image directory, and write them to the first and the
second block of the floppy disk, respectively.
*Caution:* This procedure will destroy any data currently stored on
the floppy.
On a UNIX-like operating system, that is done with the following
commands:
# cd /usr/lib/grub/i386-pc
# dd if=stage1 of=/dev/fd0 bs=512 count=1
1+0 records in
1+0 records out
# dd if=stage2 of=/dev/fd0 bs=512 seek=1
153+1 records in
153+1 records out
#
The device file name may be different. Consult the manual for your
OS.
3.2 Installing GRUB natively
============================
*Caution:* Installing GRUB's stage1 in this manner will erase the
normal boot-sector used by an OS.
GRUB can currently boot GNU Mach, Linux, FreeBSD, NetBSD, and OpenBSD
directly, so using it on a boot sector (the first sector of a
partition) should be okay. But generally, it would be a good idea to
back up the first sector of the partition on which you are installing
GRUB's stage1. This isn't as important if you are installing GRUB on
the first sector of a hard disk, since it's easy to reinitialize it
(e.g. by running `FDISK /MBR' from DOS).
If you decide to install GRUB in the native environment, which is
definitely desirable, you'll need to create a GRUB boot disk, and
reboot your computer with it. Otherwise, see *Note Installing GRUB
using grub-install::.
Once started, GRUB will show the command-line interface (*note
Command-line interface::). First, set the GRUB's "root device"(1)
(*note Installing GRUB natively-Footnote-1::) to the partition
containing the boot directory, like this:
grub> root (hd0,0)
If you are not sure which partition actually holds this directory,
use the command `find' (*note find::), like this:
grub> find /boot/grub/stage1
This will search for the file name `/boot/grub/stage1' and show the
devices which contain the file.
Once you've set the root device correctly, run the command `setup'
(*note setup::):
grub> setup (hd0)
This command will install the GRUB boot loader on the Master Boot
Record (MBR) of the first drive. If you want to put GRUB into the boot
sector of a partition instead of putting it in the MBR, specify the
partition into which you want to install GRUB:
grub> setup (hd0,0)
If you install GRUB into a partition or a drive other than the first
one, you must chain-load GRUB from another boot loader. Refer to the
manual for the boot loader to know how to chain-load GRUB.
After using the setup command, you will boot into GRUB without the
GRUB floppy. See the chapter *Note Booting:: to find out how to boot
your operating systems from GRUB.
(1) Note that GRUB's root device doesn't necessarily mean your OS's
root partition; if you need to specify a root partition for your OS,
add the argument into the command `kernel'.
3.3 Installing GRUB using grub-install
======================================
*Caution:* This procedure is definitely less safe, because there are
several ways in which your computer can become unbootable. For example,
most operating systems don't tell GRUB how to map BIOS drives to OS
devices correctly--GRUB merely "guesses" the mapping. This will succeed
in most cases, but not always. Therefore, GRUB provides you with a map
file called the "device map", which you must fix if it is wrong. *Note
Device map::, for more details.
If you still do want to install GRUB under a UNIX-like OS (such as
GNU), invoke the program `grub-install' (*note Invoking grub-install::)
as the superuser ("root").
The usage is basically very simple. You only need to specify one
argument to the program, namely, where to install the boot loader. The
argument can be either a device file (like `/dev/hda') or a partition
specified in GRUB's notation. For example, under Linux the following
will install GRUB into the MBR of the first IDE disk:
# grub-install /dev/hda
Likewise, under GNU/Hurd, this has the same effect:
# grub-install /dev/hd0
If it is the first BIOS drive, this is the same as well:
# grub-install '(hd0)'
Or you can omit the parentheses:
# grub-install hd0
But all the above examples assume that GRUB should use images under
the root directory. If you want GRUB to use images under a directory
other than the root directory, you need to specify the option
`--root-directory'. The typical usage is that you create a GRUB boot
floppy with a filesystem. Here is an example:
# mke2fs /dev/fd0
# mount -t ext2 /dev/fd0 /mnt
# grub-install --root-directory=/mnt fd0
# umount /mnt
Another example is when you have a separate boot partition which is
mounted at `/boot'. Since GRUB is a boot loader, it doesn't know
anything about mountpoints at all. Thus, you need to run `grub-install'
like this:
# grub-install --root-directory=/boot /dev/hda
By the way, as noted above, it is quite difficult to guess BIOS
drives correctly under a UNIX-like OS. Thus, `grub-install' will prompt
you to check if it could really guess the correct mappings, after the
installation. The format is defined in *Note Device map::. Please be
quite careful. If the output is wrong, it is unlikely that your
computer will be able to boot with no problem.
Note that `grub-install' is actually just a shell script and the
real task is done by the grub shell `grub' (*note Invoking the grub
shell::). Therefore, you may run `grub' directly to install GRUB,
without using `grub-install'. Don't do that, however, unless you are
very familiar with the internals of GRUB. Installing a boot loader on a
running OS may be extremely dangerous.
3.4 Making a GRUB bootable CD-ROM
=================================
GRUB supports the "no emulation mode" in the El Torito specification(1)
(*note Making a GRUB bootable CD-ROM-Footnote-1::). This means that you
can use the whole CD-ROM from GRUB and you don't have to make a floppy
or hard disk image file, which can cause compatibility problems.
For booting from a CD-ROM, GRUB uses a special Stage 2 called
`stage2_eltorito'. The only GRUB files you need to have in your
bootable CD-ROM are this `stage2_eltorito' and optionally a config file
`menu.lst'. You don't need to use `stage1' or `stage2', because El
Torito is quite different from the standard boot process.
Here is an example of procedures to make a bootable CD-ROM image.
First, make a top directory for the bootable image, say, `iso':
$ mkdir iso
Make a directory for GRUB:
$ mkdir -p iso/boot/grub
Copy the file `stage2_eltorito':
$ cp /usr/lib/grub/i386-pc/stage2_eltorito iso/boot/grub
If desired, make the config file `menu.lst' under `iso/boot/grub'
(*note Configuration::), and copy any files and directories for the
disc to the directory `iso/'.
Finally, make a ISO9660 image file like this:
$ mkisofs -R -b boot/grub/stage2_eltorito -no-emul-boot \
-boot-load-size 4 -boot-info-table -o grub.iso iso
This produces a file named `grub.iso', which then can be burned into
a CD (or a DVD). `mkisofs' has already set up the disc to boot from
the `boot/grub/stage2_eltorito' file, so there is no need to setup GRUB
on the disc. (Note that the `-boot-load-size 4' bit is required for
compatibility with the BIOS on many older machines.)
You can use the device `(cd)' to access a CD-ROM in your config
file. This is not required; GRUB automatically sets the root device to
`(cd)' when booted from a CD-ROM. It is only necessary to refer to
`(cd)' if you want to access other drives as well.
(1) El Torito is a specification for bootable CD using BIOS
functions.
4 Booting
*********
GRUB can load Multiboot-compliant kernels in a consistent way, but for
some free operating systems you need to use some OS-specific magic.
4.1 How to boot operating systems
=================================
GRUB has two distinct boot methods. One of the two is to load an
operating system directly, and the other is to chain-load another boot
loader which then will load an operating system actually. Generally
speaking, the former is more desirable, because you don't need to
install or maintain other boot loaders and GRUB is flexible enough to
load an operating system from an arbitrary disk/partition. However, the
latter is sometimes required, since GRUB doesn't support all the
existing operating systems natively.
4.1.1 How to boot an OS directly with GRUB
------------------------------------------
Multiboot (*note Multiboot Specification: (multiboot)Top.) is the
native format supported by GRUB. For the sake of convenience, there is
also support for Linux, FreeBSD, NetBSD and OpenBSD. If you want to
boot other operating systems, you will have to chain-load them (*note
Chain-loading::).
Generally, GRUB can boot any Multiboot-compliant OS in the following
steps:
1. Set GRUB's root device to the drive where the OS images are stored
with the command `root' (*note root::).
2. Load the kernel image with the command `kernel' (*note kernel::).
3. If you need modules, load them with the command `module' (*note
module::) or `modulenounzip' (*note modulenounzip::).
4. Run the command `boot' (*note boot::).
Linux, FreeBSD, NetBSD and OpenBSD can be booted in a similar
manner. You load a kernel image with the command `kernel' and then run
the command `boot'. If the kernel requires some parameters, just append
the parameters to `kernel', after the file name of the kernel. Also,
please refer to *Note OS-specific notes::, for information on your
OS-specific issues.
4.1.2 Load another boot loader to boot unsupported operating systems
--------------------------------------------------------------------
If you want to boot an unsupported operating system (e.g. Windows 95),
chain-load a boot loader for the operating system. Normally, the boot
loader is embedded in the "boot sector" of the partition on which the
operating system is installed.
1. Set GRUB's root device to the partition by the command
`rootnoverify' (*note rootnoverify::):
grub> rootnoverify (hd0,0)
2. Set the "active" flag in the partition using the command
`makeactive'(1) (*note Chain-loading-Footnote-1::) (*note
makeactive::):
grub> makeactive
3. Load the boot loader with the command `chainloader' (*note
chainloader::):
grub> chainloader +1
`+1' indicates that GRUB should read one sector from the start of
the partition. The complete description about this syntax can be
found in *Note Block list syntax::.
4. Run the command `boot' (*note boot::).
However, DOS and Windows have some deficiencies, so you might have to
use more complicated instructions. *Note DOS/Windows::, for more
information.
(1) This is not necessary for most of the modern operating systems.
4.2 Some caveats on OS-specific issues
======================================
Here, we describe some caveats on several operating systems.
4.2.1 GNU/Hurd
--------------
Since GNU/Hurd is Multiboot-compliant, it is easy to boot it; there is
nothing special about it. But do not forget that you have to specify a
root partition to the kernel.
1. Set GRUB's root device to the same drive as GNU/Hurd's. Probably
the command `find /boot/gnumach' or similar can help you (*note
find::).
2. Load the kernel and the module, like this:
grub> kernel /boot/gnumach root=hd0s1
grub> module /boot/serverboot
3. Run the command `boot' (*note boot::).
4.2.2 GNU/Linux
---------------
It is relatively easy to boot GNU/Linux from GRUB, because it somewhat
resembles to boot a Multiboot-compliant OS.
1. Set GRUB's root device to the same drive as GNU/Linux's. Probably
the command `find /vmlinuz' or similar can help you (*note find::).
2. Load the kernel:
grub> kernel /vmlinuz root=/dev/hda1
If you need to specify some kernel parameters, just append them to
the command. For example, to set `vga' to `ext', do this:
grub> kernel /vmlinuz root=/dev/hda1 vga=ext
See the documentation in the Linux source tree for complete
information on the available options.
3. If you use an initrd, execute the command `initrd' (*note
initrd::) after `kernel':
grub> initrd /initrd
4. Finally, run the command `boot' (*note boot::).
*Caution:* If you use an initrd and specify the `mem=' option to the
kernel to let it use less than actual memory size, you will also have
to specify the same memory size to GRUB. To let GRUB know the size, run
the command `uppermem' _before_ loading the kernel. *Note uppermem::,
for more information.
4.2.3 FreeBSD
-------------
GRUB can load the kernel directly, either in ELF or a.out format. But
this is not recommended, since FreeBSD's bootstrap interface sometimes
changes heavily, so GRUB can't guarantee to pass kernel parameters
correctly.
Thus, we'd recommend loading the very flexible loader `/boot/loader'
instead. See this example:
grub> root (hd0,a)
grub> kernel /boot/loader
grub> boot
4.2.4 NetBSD
------------
GRUB can load NetBSD a.out and ELF directly, follow these steps:
1. Set GRUB's root device with `root' (*note root::).
2. Load the kernel with `kernel' (*note kernel::). You should append
the ugly option `--type=netbsd', if you want to load an ELF
kernel, like this:
grub> kernel --type=netbsd /netbsd-elf
3. Run `boot' (*note boot::).
For now, however, GRUB doesn't allow you to pass kernel parameters,
so it may be better to chain-load it instead. For more information,
please see *Note Chain-loading::.
4.2.5 OpenBSD
-------------
The booting instruction is exactly the same as for NetBSD (*note
NetBSD::).
4.2.6 DOS/Windows
-----------------
GRUB cannot boot DOS or Windows directly, so you must chain-load them
(*note Chain-loading::). However, their boot loaders have some critical
deficiencies, so it may not work to just chain-load them. To overcome
the problems, GRUB provides you with two helper functions.
If you have installed DOS (or Windows) on a non-first hard disk, you
have to use the disk swapping technique, because that OS cannot boot
from any disks but the first one. The workaround used in GRUB is the
command `map' (*note map::), like this:
grub> map (hd0) (hd1)
grub> map (hd1) (hd0)
This performs a "virtual" swap between your first and second hard
drive.
*Caution:* This is effective only if DOS (or Windows) uses BIOS to
access the swapped disks. If that OS uses a special driver for the
disks, this probably won't work.
Another problem arises if you installed more than one set of
DOS/Windows onto one disk, because they could be confused if there are
more than one primary partitions for DOS/Windows. Certainly you should
avoid doing this, but there is a solution if you do want to do so. Use
the partition hiding/unhiding technique.
If GRUB "hide"s a DOS (or Windows) partition (*note hide::), DOS (or
Windows) will ignore the partition. If GRUB "unhide"s a DOS (or
Windows) partition (*note unhide::), DOS (or Windows) will detect the
partition. Thus, if you have installed DOS (or Windows) on the first
and the second partition of the first hard disk, and you want to boot
the copy on the first partition, do the following:
grub> unhide (hd0,0)
grub> hide (hd0,1)
grub> rootnoverify (hd0,0)
grub> chainloader +1
grub> makeactive
grub> boot
4.2.7 SCO UnixWare
------------------
It is known that the signature in the boot loader for SCO UnixWare is
wrong, so you will have to specify the option `--force' to
`chainloader' (*note chainloader::), like this:
grub> rootnoverify (hd1,0)
grub> chainloader --force +1
grub> makeactive
grub> boot
4.2.8 QNX
---------
QNX seems to use a bigger boot loader, so you need to boot it up, like
this:
grub> rootnoverify (hd1,1)
grub> chainloader +4
grub> boot
4.3 How to make your system robust
==================================
When you test a new kernel or a new OS, it is important to make sure
that your computer can boot even if the new system is unbootable. This
is crucial especially if you maintain servers or remote systems. To
accomplish this goal, you need to set up two things:
1. You must maintain a system which is always bootable. For instance,
if you test a new kernel, you need to keep a working kernel in a
different place. And, it would sometimes be very nice to even have
a complete copy of a working system in a different partition or
disk.
2. You must direct GRUB to boot a working system when the new system
fails. This is possible with the "fallback" system in GRUB.
The former requirement is very specific to each OS, so this
documentation does not cover that topic. It is better to consult some
backup tools.
So let's see the GRUB part. There are two possibilities: one of them
is quite simple but not very robust, and the other is a bit complex to
set up but probably the best solution to make sure that your system can
start as long as GRUB itself is bootable.
4.3.1 Booting once-only
-----------------------
You can teach GRUB to boot an entry only at next boot time. Suppose
that your have an old kernel `old_kernel' and a new kernel
`new_kernel'. You know that `old_kernel' can boot your system
correctly, and you want to test `new_kernel'.
To ensure that your system will go back to the old kernel even if the
new kernel fails (e.g. it panics), you can specify that GRUB should try
the new kernel only once and boot the old kernel after that.
First, modify your configuration file. Here is an example:
default saved # This is important!!!
timeout 10
title the old kernel
root (hd0,0)
kernel /old_kernel
savedefault
title the new kernel
root (hd0,0)
kernel /new_kernel
savedefault 0 # This is important!!!
Note that this configuration file uses `default saved' (*note
default::) at the head and `savedefault 0' (*note savedefault::) in the
entry for the new kernel. This means that GRUB boots a saved entry by
default, and booting the entry for the new kernel saves `0' as the
saved entry.
With this configuration file, after all, GRUB always tries to boot
the old kernel after it booted the new one, because `0' is the entry of
`the old kernel'.
The next step is to tell GRUB to boot the new kernel at next boot
time. For this, execute `grub-set-default' (*note Invoking
grub-set-default::):
# grub-set-default 1
This command sets the saved entry to `1', that is, to the new kernel.
This method is useful, but still not very robust, because GRUB stops
booting, if there is any error in the boot entry, such that the new
kernel has an invalid executable format. Thus, it it even better to use
the "fallback" mechanism of GRUB. Look at next subsection for this
feature.
4.3.2 Booting fallback systems
------------------------------
GRUB supports a fallback mechanism of booting one or more other entries
if a default boot entry fails. You can specify multiple fallback
entries if you wish.
Suppose that you have three systems, `A', `B' and `C'. `A' is a
system which you want to boot by default. `B' is a backup system which
is supposed to boot safely. `C' is another backup system which is used
in case where `B' is broken.
Then you may want GRUB to boot the first system which is bootable
among `A', `B' and `C'. A configuration file can be written in this way:
default saved # This is important!!!
timeout 10
fallback 1 2 # This is important!!!
title A
root (hd0,0)
kernel /kernel
savedefault fallback # This is important!!!
title B
root (hd1,0)
kernel /kernel
savedefault fallback # This is important!!!
title C
root (hd2,0)
kernel /kernel
savedefault
Note that `default saved' (*note default::), `fallback 1 2' and
`savedefault fallback' are used. GRUB will boot a saved entry by
default and save a fallback entry as next boot entry with this
configuration.
When GRUB tries to boot `A', GRUB saves `1' as next boot entry,
because the command `fallback' specifies that `1' is the first fallback
entry. The entry `1' is `B', so GRUB will try to boot `B' at next boot
time.
Likewise, when GRUB tries to boot `B', GRUB saves `2' as next boot
entry, because `fallback' specifies `2' as next fallback entry. This
makes sure that GRUB will boot `C' after booting `B'.
It is noteworthy that GRUB uses fallback entries both when GRUB
itself fails in booting an entry and when `A' or `B' fails in starting
up your system. So this solution ensures that your system is started
even if GRUB cannot find your kernel or if your kernel panics.
However, you need to run `grub-set-default' (*note Invoking
grub-set-default::) when `A' starts correctly or you fix `A' after it
crashes, since GRUB always sets next boot entry to a fallback entry.
You should run this command in a startup script such as `rc.local' to
boot `A' by default:
# grub-set-default 0
where `0' is the number of the boot entry for the system `A'.
If you want to see what is current default entry, you can look at the
file `/boot/grub/default' (or `/grub/default' in some systems). Because
this file is plain-text, you can just `cat' this file. But it is
strongly recommended *not to modify this file directly*, because GRUB
may fail in saving a default entry in this file, if you change this
file in an unintended manner. Therefore, you should use
`grub-set-default' when you need to change the default entry.
5 Configuration
***************
You've probably noticed that you need to type several commands to boot
your OS. There's a solution to that - GRUB provides a menu interface
(*note Menu interface::) from which you can select an item (using arrow
keys) that will do everything to boot an OS.
To enable the menu, you need a configuration file, `menu.lst' under
the boot directory. We'll analyze an example file.
The file first contains some general settings, the menu interface
related options. You can put these commands (*note Menu-specific
commands::) before any of the items (starting with `title' (*note
title::)).
#
# Sample boot menu configuration file
#
As you may have guessed, these lines are comments. Lines starting
with a hash character (`#'), and blank lines, are ignored by GRUB.
# By default, boot the first entry.
default 0
The first entry (here, counting starts with number zero, not one!)
will be the default choice.
# Boot automatically after 30 secs.
timeout 30
As the comment says, GRUB will boot automatically in 30 seconds,
unless interrupted with a keypress.
# Fallback to the second entry.
fallback 1
If, for any reason, the default entry doesn't work, fall back to the
second one (this is rarely used, for obvious reasons).
Note that the complete descriptions of these commands, which are menu
interface specific, can be found in *Note Menu-specific commands::.
Other descriptions can be found in *Note Commands::.
Now, on to the actual OS definitions. You will see that each entry
begins with a special command, `title' (*note title::), and the action
is described after it. Note that there is no command `boot' (*note
boot::) at the end of each item. That is because GRUB automatically
executes `boot' if it loads other commands successfully.
The argument for the command `title' is used to display a short
title/description of the entry in the menu. Since `title' displays the
argument as is, you can write basically anything there.
# For booting GNU/Hurd
title GNU/Hurd
root (hd0,0)
kernel /boot/gnumach.gz root=hd0s1
module /boot/serverboot.gz
This boots GNU/Hurd from the first hard disk.
# For booting GNU/Linux
title GNU/Linux
kernel (hd1,0)/vmlinuz root=/dev/hdb1
This boots GNU/Linux, but from the second hard disk.
# For booting Mach (getting kernel from floppy)
title Utah Mach4 multiboot
root (hd0,2)
pause Insert the diskette now^G!!
kernel (fd0)/boot/kernel root=hd0s3
module (fd0)/boot/bootstrap
This boots Mach with a kernel on a floppy, but the root filesystem at
hd0s3. It also contains a `pause' line (*note pause::), which will
cause GRUB to display a prompt and delay, before actually executing the
rest of the commands and booting.
# For booting FreeBSD
title FreeBSD
root (hd0,2,a)
kernel /boot/loader
This item will boot FreeBSD kernel loaded from the `a' partition of
the third PC slice of the first hard disk.
# For booting OS/2
title OS/2
root (hd0,1)
makeactive
# chainload OS/2 bootloader from the first sector
chainloader +1
# This is similar to "chainload", but loads a specific file
#chainloader /boot/chain.os2
This will boot OS/2, using a chain-loader (*note Chain-loading::).
# For booting Windows NT or Windows95
title Windows NT / Windows 95 boot menu
root (hd0,0)
makeactive
chainloader +1
# For loading DOS if Windows NT is installed
# chainload /bootsect.dos
The same as the above, but for Windows.
# For installing GRUB into the hard disk
title Install GRUB into the hard disk
root (hd0,0)
setup (hd0)
This will just (re)install GRUB onto the hard disk.
# Change the colors.
title Change the colors
color light-green/brown blink-red/blue
In the last entry, the command `color' is used (*note color::), to
change the menu colors (try it!). This command is somewhat special,
because it can be used both in the command-line and in the menu. GRUB
has several such commands, see *Note General commands::.
We hope that you now understand how to use the basic features of
GRUB. To learn more about GRUB, see the following chapters.
6 Downloading OS images from a network
**************************************
Although GRUB is a disk-based boot loader, it does provide network
support. To use the network support, you need to enable at least one
network driver in the GRUB build process. For more information please
see `netboot/README.netboot' in the source distribution.
6.1 How to set up your network
==============================
GRUB requires a file server and optionally a server that will assign an
IP address to the machine on which GRUB is running. For the former, only
TFTP is supported at the moment. The latter is either BOOTP, DHCP or a
RARP server(1) (*note General usage of network support-Footnote-1::).
It is not necessary to run both the servers on one computer. How to
configure these servers is beyond the scope of this document, so please
refer to the manuals specific to those protocols/servers.
If you decided to use a server to assign an IP address, set up the
server and run `bootp' (*note bootp::), `dhcp' (*note dhcp::) or `rarp'
(*note rarp::) for BOOTP, DHCP or RARP, respectively. Each command will
show an assigned IP address, a netmask, an IP address for your TFTP
server and a gateway. If any of the addresses is wrong or it causes an
error, probably the configuration of your servers isn't set up properly.
Otherwise, run `ifconfig', like this:
grub> ifconfig --address=192.168.110.23 --server=192.168.110.14
You can also use `ifconfig' in conjuction with `bootp', `dhcp' or
`rarp' (e.g. to reassign the server address manually). *Note
ifconfig::, for more details.
Finally, download your OS images from your network. The network can
be accessed using the network drive `(nd)'. Everything else is very
similar to the normal instructions (*note Booting::).
Here is an example:
grub> bootp
Probing... [NE*000]
NE2000 base ...
Address: 192.168.110.23 Netmask: 255.255.255.0
Server: 192.168.110.14 Gateway: 192.168.110.1
grub> root (nd)
grub> kernel /tftproot/gnumach.gz root=sd0s1
grub> module /tftproot/serverboot.gz
grub> boot
(1) RARP is not advised, since it cannot serve much information
6.2 Booting from a network
==========================
It is sometimes very useful to boot from a network, especially when you
use a machine which has no local disk. In this case, you need to obtain
a kind of Net Boot ROM, such as a PXE ROM or a free software package
like Etherboot. Such a Boot ROM first boots the machine, sets up the
network card installed into the machine, and downloads a second stage
boot image from the network. Then, the second image will try to boot an
operating system actually from the network.
GRUB provides two second stage images, `nbgrub' and `pxegrub' (*note
Images::). These images are the same as the normal Stage 2, except that
they set up a network automatically, and try to load a configuration
file from the network, if specified. The usage is very simple: If the
machine has a PXE ROM, use `pxegrub'. If the machine has an NBI loader
such as Etherboot, use `nbgrub'. There is no difference between them
except their formats. Since the way to load a second stage image you
want to use should be described in the manual on your Net Boot ROM,
please refer to the manual, for more information.
However, there is one thing specific to GRUB. Namely, how to specify
a configuration file in a BOOTP/DHCP server. For now, GRUB uses the tag
`150', to get the name of a configuration file. The following is an
example with a BOOTP configuration:
.allhost:hd=/tmp:bf=null:\
:ds=145.71.35.1 145.71.32.1:\
:sm=255.255.254.0:\
:gw=145.71.35.1:\
:sa=145.71.35.5:
foo:ht=1:ha=63655d0334a7:ip=145.71.35.127:\
:bf=/nbgrub:\
:tc=.allhost:\
:T150="(nd)/tftpboot/menu.lst.foo":
Note that you should specify the drive name `(nd)' in the name of
the configuration file. This is because you might change the root drive
before downloading the configuration from the TFTP server when the
preset menu feature is used (*note Preset Menu::).
See the manual of your BOOTP/DHCP server for more information. The
exact syntax should differ a little from the example.
7 Using GRUB via a serial line
******************************
This chapter describes how to use the serial terminal support in GRUB.
If you have many computers or computers with no display/keyboard, it
could be very useful to control the computers through serial
communications. To connect one computer with another via a serial line,
you need to prepare a null-modem (cross) serial cable, and you may need
to have multiport serial boards, if your computer doesn't have extra
serial ports. In addition, a terminal emulator is also required, such as
minicom. Refer to a manual of your operating system, for more
information.
As for GRUB, the instruction to set up a serial terminal is quite
simple. First of all, make sure that you haven't specified the option
`--disable-serial' to the configure script when you built your GRUB
images. If you get them in binary form, probably they have serial
terminal support already.
Then, initialize your serial terminal after GRUB starts up. Here is
an example:
grub> serial --unit=0 --speed=9600
grub> terminal serial
The command `serial' initializes the serial unit 0 with the speed
9600bps. The serial unit 0 is usually called `COM1', so, if you want to
use COM2, you must specify `--unit=1' instead. This command accepts
many other options, so please refer to *Note serial::, for more details.
The command `terminal' (*note terminal::) chooses which type of
terminal you want to use. In the case above, the terminal will be a
serial terminal, but you can also pass `console' to the command, as
`terminal serial console'. In this case, a terminal in which you press
any key will be selected as a GRUB terminal.
However, note that GRUB assumes that your terminal emulator is
compatible with VT100 by default. This is true for most terminal
emulators nowadays, but you should pass the option `--dumb' to the
command if your terminal emulator is not VT100-compatible or implements
few VT100 escape sequences. If you specify this option then GRUB
provides you with an alternative menu interface, because the normal
menu requires several fancy features of your terminal.
8 Embedding a configuration file into GRUB
******************************************
GRUB supports a "preset menu" which is to be always loaded before
starting. The preset menu feature is useful, for example, when your
computer has no console but a serial cable. In this case, it is
critical to set up the serial terminal as soon as possible, since you
cannot see any message until the serial terminal begins to work. So it
is good to run the commands `serial' (*note serial::) and `terminal'
(*note terminal::) before anything else at the start-up time.
How the preset menu works is slightly complicated:
1. GRUB checks if the preset menu feature is used, and loads the
preset menu, if available. This includes running commands and
reading boot entries, like an ordinary configuration file.
2. GRUB checks if the configuration file is available. Note that this
check is performed *regardless of the existence of the preset
menu*. The configuration file is loaded even if the preset menu was
loaded.
3. If the preset menu includes any boot entries, they are cleared when
the configuration file is loaded. It doesn't matter whether the
configuration file has any entries or no entry. The boot entries
in the preset menu are used only when GRUB fails in loading the
configuration file.
To enable the preset menu feature, you must rebuild GRUB specifying a
file to the configure script with the option `--enable-preset-menu'.
The file has the same semantics as normal configuration files (*note
Configuration::).
Another point you should take care is that the diskless support
(*note Diskless::) diverts the preset menu. Diskless images embed a
preset menu to execute the command `bootp' (*note bootp::)
automatically, unless you specify your own preset menu to the configure
script. This means that you must put commands to initialize a network in
the preset menu yourself, because diskless images don't set it up
implicitly, when you use the preset menu explicitly.
Therefore, a typical preset menu used with diskless support would be
like this:
# Set up the serial terminal, first of all.
serial --unit=0 --speed=19200
terminal --timeout=0 serial
# Initialize the network.
dhcp
9 Protecting your computer from cracking
****************************************
You may be interested in how to prevent ordinary users from doing
whatever they like, if you share your computer with other people. So
this chapter describes how to improve the security of GRUB.
One thing which could be a security hole is that the user can do too
many things with GRUB, because GRUB allows one to modify its
configuration and run arbitrary commands at run-time. For example, the
user can even read `/etc/passwd' in the command-line interface by the
command `cat' (*note cat::). So it is necessary to disable all the
interactive operations.
Thus, GRUB provides a "password" feature, so that only administrators
can start the interactive operations (i.e. editing menu entries and
entering the command-line interface). To use this feature, you need to
run the command `password' in your configuration file (*note
password::), like this:
password --md5 PASSWORD
If this is specified, GRUB disallows any interactive control, until
you press the key <p> and enter a correct password. The option `--md5'
tells GRUB that `PASSWORD' is in MD5 format. If it is omitted, GRUB
assumes the `PASSWORD' is in clear text.
You can encrypt your password with the command `md5crypt' (*note
md5crypt::). For example, run the grub shell (*note Invoking the grub
shell::), and enter your password:
grub> md5crypt
Password: **********
Encrypted: $1$U$JK7xFegdxWH6VuppCUSIb.
Then, cut and paste the encrypted password to your configuration
file.
Also, you can specify an optional argument to `password'. See this
example:
password PASSWORD /boot/grub/menu-admin.lst
In this case, GRUB will load `/boot/grub/menu-admin.lst' as a
configuration file when you enter the valid password.
Another thing which may be dangerous is that any user can choose any
menu entry. Usually, this wouldn't be problematic, but you might want to
permit only administrators to run some of your menu entries, such as an
entry for booting an insecure OS like DOS.
GRUB provides the command `lock' (*note lock::). This command always
fails until you enter the valid password, so you can use it, like this:
title Boot DOS
lock
rootnoverify (hd0,1)
makeactive
chainload +1
You should insert `lock' right after `title', because any user can
execute commands in an entry until GRUB encounters `lock'.
You can also use the command `password' instead of `lock'. In this
case the boot process will ask for the password and stop if it was
entered incorrectly. Since the `password' takes its own PASSWORD
argument this is useful if you want different passwords for different
entries.
10 GRUB image files
*******************
GRUB consists of several images: two essential stages, optional stages
called "Stage 1.5", one image for bootable CD-ROM, and two network boot
images. Here is a short overview of them. *Note Internals::, for more
details.
`stage1'
This is an essential image used for booting up GRUB. Usually, this
is embedded in an MBR or the boot sector of a partition. Because a
PC boot sector is 512 bytes, the size of this image is exactly 512
bytes.
All `stage1' must do is to load Stage 2 or Stage 1.5 from a local
disk. Because of the size restriction, `stage1' encodes the
location of Stage 2 (or Stage 1.5) in a block list format, so it
never understand any filesystem structure.
`stage2'
This is the core image of GRUB. It does everything but booting up
itself. Usually, this is put in a filesystem, but that is not
required.
`e2fs_stage1_5'
`fat_stage1_5'
`ffs_stage1_5'
`jfs_stage1_5'
`minix_stage1_5'
`reiserfs_stage1_5'
`vstafs_stage1_5'
`xfs_stage1_5'
These are called "Stage 1.5", because they serve as a bridge
between `stage1' and `stage2', that is to say, Stage 1.5 is loaded
by Stage 1 and Stage 1.5 loads Stage 2. The difference between
`stage1' and `*_stage1_5' is that the former doesn't understand
any filesystem while the latter understands one filesystem (e.g.
`e2fs_stage1_5' understands ext2fs). So you can move the Stage 2
image to another location safely, even after GRUB has been
installed.
While Stage 2 cannot generally be embedded in a fixed area as the
size is so large, Stage 1.5 can be installed into the area right
after an MBR, or the boot loader area of a ReiserFS or a FFS.
`stage2_eltorito'
This is a boot image for CD-ROMs using the "no emulation mode" in
El Torito specification. This is identical to Stage 2, except that
this boots up without Stage 1 and sets up a special drive `(cd)'.
`nbgrub'
This is a network boot image for the Network Image Proposal used
by some network boot loaders, such as Etherboot. This is mostly
the same as Stage 2, but it also sets up a network and loads a
configuration file from the network.
`pxegrub'
This is another network boot image for the Preboot Execution
Environment used by several Netboot ROMs. This is identical to
`nbgrub', except for the format.
11 Filesystem syntax and semantics
**********************************
GRUB uses a special syntax for specifying disk drives which can be
accessed by BIOS. Because of BIOS limitations, GRUB cannot distinguish
between IDE, ESDI, SCSI, or others. You must know yourself which BIOS
device is equivalent to which OS device. Normally, that will be clear if
you see the files in a device or use the command `find' (*note find::).
11.1 How to specify devices
===========================
The device syntax is like this:
`(DEVICE[,PART-NUM][,BSD-SUBPART-LETTER])'
`[]' means the parameter is optional. DEVICE should be either `fd'
or `hd' followed by a digit, like `fd0'. But you can also set DEVICE
to a hexadecimal or a decimal number which is a BIOS drive number, so
the following are equivalent:
(hd0)
(0x80)
(128)
PART-NUM represents the partition number of DEVICE, starting from
zero for primary partitions and from four for extended partitions, and
BSD-SUBPART-LETTER represents the BSD disklabel subpartition, such as
`a' or `e'.
A shortcut for specifying BSD subpartitions is
`(DEVICE,BSD-SUBPART-LETTER)', in this case, GRUB searches for the
first PC partition containing a BSD disklabel, then finds the
subpartition BSD-SUBPART-LETTER. Here is an example:
(hd0,a)
The syntax `(hd0)' represents using the entire disk (or the MBR when
installing GRUB), while the syntax `(hd0,0)' represents using the first
partition of the disk (or the boot sector of the partition when
installing GRUB).
If you enabled the network support, the special drive, `(nd)', is
also available. Before using the network drive, you must initialize the
network. *Note Network::, for more information.
If you boot GRUB from a CD-ROM, `(cd)' is available. *Note Making a
GRUB bootable CD-ROM::, for details.
11.2 How to specify files
=========================
There are two ways to specify files, by "absolute file name" and by
"block list".
An absolute file name resembles a Unix absolute file name, using `/'
for the directory separator (not `\' as in DOS). One example is
`(hd0,0)/boot/grub/menu.lst'. This means the file `/boot/grub/menu.lst'
in the first partition of the first hard disk. If you omit the device
name in an absolute file name, GRUB uses GRUB's "root device"
implicitly. So if you set the root device to, say, `(hd1,0)' by the
command `root' (*note root::), then `/boot/kernel' is the same as
`(hd1,0)/boot/kernel'.
11.3 How to specify block lists
===============================
A block list is used for specifying a file that doesn't appear in the
filesystem, like a chainloader. The syntax is
`[OFFSET]+LENGTH[,[OFFSET]+LENGTH]...'. Here is an example:
`0+100,200+1,300+300'
This represents that GRUB should read blocks 0 through 99, block 200,
and blocks 300 through 599. If you omit an offset, then GRUB assumes
the offset is zero.
Like the file name syntax (*note File name syntax::), if a blocklist
does not contain a device name, then GRUB uses GRUB's "root device". So
`(hd0,1)+1' is the same as `+1' when the root device is `(hd0,1)'.
12 GRUB's user interface
************************
GRUB has both a simple menu interface for choosing preset entries from a
configuration file, and a highly flexible command-line for performing
any desired combination of boot commands.
GRUB looks for its configuration file as soon as it is loaded. If one
is found, then the full menu interface is activated using whatever
entries were found in the file. If you choose the "command-line" menu
option, or if the configuration file was not found, then GRUB drops to
the command-line interface.
12.1 The flexible command-line interface
========================================
The command-line interface provides a prompt and after it an editable
text area much like a command-line in Unix or DOS. Each command is
immediately executed after it is entered(1) (*note Command-line
interface-Footnote-1::). The commands (*note Command-line and menu
entry commands::) are a subset of those available in the configuration
file, used with exactly the same syntax.
Cursor movement and editing of the text on the line can be done via a
subset of the functions available in the Bash shell:
<C-f>
<PC right key>
Move forward one character.
<C-b>
<PC left key>
Move back one character.
<C-a>
<HOME>
Move to the start of the line.
<C-e>
<END>
Move the the end of the line.
<C-d>
<DEL>
Delete the character underneath the cursor.
<C-h>
<BS>
Delete the character to the left of the cursor.
<C-k>
Kill the text from the current cursor position to the end of the
line.
<C-u>
Kill backward from the cursor to the beginning of the line.
<C-y>
Yank the killed text back into the buffer at the cursor.
<C-p>
<PC up key>
Move up through the history list.
<C-n>
<PC down key>
Move down through the history list.
When typing commands interactively, if the cursor is within or before
the first word in the command-line, pressing the <TAB> key (or <C-i>)
will display a listing of the available commands, and if the cursor is
after the first word, the `<TAB>' will provide a completion listing of
disks, partitions, and file names depending on the context. Note that
to obtain a list of drives, one must open a parenthesis, as `root ('.
Note that you cannot use the completion functionality in the TFTP
filesystem. This is because TFTP doesn't support file name listing for
the security.
(1) However, this behavior will be changed in the future version, in
a user-invisible way.
12.2 The simple menu interface
==============================
The menu interface is quite easy to use. Its commands are both
reasonably intuitive and described on screen.
Basically, the menu interface provides a list of "boot entries" to
the user to choose from. Use the arrow keys to select the entry of
choice, then press <RET> to run it. An optional timeout is available
to boot the default entry (the first one if not set), which is aborted
by pressing any key.
Commands are available to enter a bare command-line by pressing <c>
(which operates exactly like the non-config-file version of GRUB, but
allows one to return to the menu if desired by pressing <ESC>) or to
edit any of the "boot entries" by pressing <e>.
If you protect the menu interface with a password (*note Security::),
all you can do is choose an entry by pressing <RET>, or press <p> to
enter the password.
12.3 Editing a menu entry
=========================
The menu entry editor looks much like the main menu interface, but the
lines in the menu are individual commands in the selected entry instead
of entry names.
If an <ESC> is pressed in the editor, it aborts all the changes made
to the configuration entry and returns to the main menu interface.
When a particular line is selected, the editor places the user in a
special version of the GRUB command-line to edit that line. When the
user hits <RET>, GRUB replaces the line in question in the boot entry
with the changes (unless it was aborted via <ESC>, in which case the
changes are thrown away).
If you want to add a new line to the menu entry, press <o> if adding
a line after the current line or press <O> if before the current line.
To delete a line, hit the key <d>. Although GRUB unfortunately does
not support "undo", you can do almost the same thing by just returning
to the main menu.
12.4 The hidden menu interface
==============================
When your terminal is dumb or you request GRUB to hide the menu
interface explicitly with the command `hiddenmenu' (*note
hiddenmenu::), GRUB doesn't show the menu interface (*note Menu
interface::) and automatically boots the default entry, unless
interrupted by pressing <ESC>.
When you interrupt the timeout and your terminal is dumb, GRUB falls
back to the command-line interface (*note Command-line interface::).
13 The list of available commands
*********************************
In this chapter, we list all commands that are available in GRUB.
Commands belong to different groups. A few can only be used in the
global section of the configuration file (or "menu"); most of them can
be entered on the command-line and can be used either anywhere in the
menu or specifically in the menu entries.
13.1 The list of commands for the menu only
===========================================
The semantics used in parsing the configuration file are the following:
* The menu-specific commands have to be used before any others.
* The files _must_ be in plain-text format.
* `#' at the beginning of a line in a configuration file means it is
only a comment.
* Options are separated by spaces.
* All numbers can be either decimal or hexadecimal. A hexadecimal
number must be preceded by `0x', and is case-insensitive.
* Extra options or text at the end of the line are ignored unless
otherwise specified.
* Unrecognized commands are added to the current entry, except
before entries start, where they are ignored.
These commands can only be used in the menu:
13.1.1 default
--------------
-- Command: default num
Set the default entry to the entry number NUM. Numbering starts
from 0, and the entry number 0 is the default if the command is not
used.
You can specify `saved' instead of a number. In this case, the
default entry is the entry saved with the command `savedefault'.
*Note savedefault::, for more information.
13.1.2 fallback
---------------
-- Command: fallback num...
Go into unattended boot mode: if the default boot entry has any
errors, instead of waiting for the user to do something,
immediately start over using the NUM entry (same numbering as the
`default' command (*note default::)). This obviously won't help if
the machine was rebooted by a kernel that GRUB loaded. You can
specify multiple fallback entry numbers.
13.1.3 hiddenmenu
-----------------
-- Command: hiddenmenu
Don't display the menu. If the command is used, no menu will be
displayed on the control terminal, and the default entry will be
booted after the timeout expired. The user can still request the
menu to be displayed by pressing <ESC> before the timeout expires.
See also *Note Hidden menu interface::.
13.1.4 timeout
--------------
-- Command: timeout sec
Set a timeout, in SEC seconds, before automatically booting the
default entry (normally the first entry defined).
13.1.5 title
------------
-- Command: title name ...
Start a new boot entry, and set its name to the contents of the
rest of the line, starting with the first non-space character.
13.2 The list of general commands
=================================
Commands usable anywhere in the menu and in the command-line.
13.2.1 bootp
------------
-- Command: bootp [`--with-configfile']
Initialize a network device via the "BOOTP" protocol. This command
is only available if GRUB is compiled with netboot support. See
also *Note Network::.
If you specify `--with-configfile' to this command, GRUB will
fetch and load a configuration file specified by your BOOTP server
with the vendor tag `150'.
13.2.2 color
------------
-- Command: color normal [highlight]
Change the menu colors. The color NORMAL is used for most lines in
the menu (*note Menu interface::), and the color HIGHLIGHT is used
to highlight the line where the cursor points. If you omit
HIGHLIGHT, then the inverted color of NORMAL is used for the
highlighted line. The format of a color is
`FOREGROUND/BACKGROUND'. FOREGROUND and BACKGROUND are symbolic
color names. A symbolic color name must be one of these:
* black
* blue
* green
* cyan
* red
* magenta
* brown
* light-gray
*These below can be specified only for the foreground.*
* dark-gray
* light-blue
* light-green
* light-cyan
* light-red
* light-magenta
* yellow
* white
But only the first eight names can be used for BACKGROUND. You can
prefix `blink-' to FOREGROUND if you want a blinking foreground
color.
This command can be used in the configuration file and on the
command line, so you may write something like this in your
configuration file:
# Set default colors.
color light-gray/blue black/light-gray
# Change the colors.
title OS-BS like
color magenta/blue black/magenta
13.2.3 device
-------------
-- Command: device drive file
In the grub shell, specify the file FILE as the actual drive for a
BIOS drive DRIVE. You can use this command to create a disk image,
and/or to fix the drives guessed by GRUB when GRUB fails to
determine them correctly, like this:
grub> device (fd0) /floppy-image
grub> device (hd0) /dev/sd0
This command can be used only in the grub shell (*note Invoking
the grub shell::).
13.2.4 dhcp
-----------
-- Command: dhcp [-with-configfile]
Initialize a network device via the "DHCP" protocol. Currently,
this command is just an alias for `bootp', since the two protocols
are very similar. This command is only available if GRUB is
compiled with netboot support. See also *Note Network::.
If you specify `--with-configfile' to this command, GRUB will
fetch and load a configuration file specified by your DHCP server
with the vendor tag `150'.
13.2.5 hide
-----------
-- Command: hide partition
Hide the partition PARTITION by setting the "hidden" bit in its
partition type code. This is useful only when booting DOS or
Windows and multiple primary FAT partitions exist in one disk. See
also *Note DOS/Windows::.
13.2.6 ifconfig
---------------
-- Command: ifconfig [`--server=server'] [`--gateway=gateway']
[`--mask=mask'] [`--address=address']
Configure the IP address, the netmask, the gateway, and the server
address of a network device manually. The values must be in dotted
decimal format, like `192.168.11.178'. The order of the options is
not important. This command shows current network configuration,
if no option is specified. See also *Note Network::.
13.2.7 pager
------------
-- Command: pager [flag]
Toggle or set the state of the internal pager. If FLAG is `on',
the internal pager is enabled. If FLAG is `off', it is disabled.
If no argument is given, the state is toggled.
13.2.8 partnew
--------------
-- Command: partnew part type from len
Create a new primary partition. PART is a partition specification
in GRUB syntax (*note Naming convention::); TYPE is the partition
type and must be a number in the range `0-0xff'; FROM is the
starting address and LEN is the length, both in sector units.
13.2.9 parttype
---------------
-- Command: parttype part type
Change the type of an existing partition. PART is a partition
specification in GRUB syntax (*note Naming convention::); TYPE is
the new partition type and must be a number in the range 0-0xff.
13.2.10 password
----------------
-- Command: password [`--md5'] passwd [new-config-file]
If used in the first section of a menu file, disable all
interactive editing control (menu entry editor and command-line)
and entries protected by the command `lock'. If the password
PASSWD is entered, it loads the NEW-CONFIG-FILE as a new config
file and restarts the GRUB Stage 2, if NEW-CONFIG-FILE is
specified. Otherwise, GRUB will just unlock the privileged
instructions. You can also use this command in the script
section, in which case it will ask for the password, before
continuing. The option `--md5' tells GRUB that PASSWD is
encrypted with `md5crypt' (*note md5crypt::).
13.2.11 rarp
------------
-- Command: rarp
Initialize a network device via the "RARP" protocol. This command
is only available if GRUB is compiled with netboot support. See
also *Note Network::.
13.2.12 serial
--------------
-- Command: serial [`--unit=unit'] [`--port=port'] [`--speed=speed']
[`--word=word'] [`--parity=parity'] [`--stop=stop']
[`--device=dev']
Initialize a serial device. UNIT is a number in the range 0-3
specifying which serial port to use; default is 0, which
corresponds to the port often called COM1. PORT is the I/O port
where the UART is to be found; if specified it takes precedence
over UNIT. SPEED is the transmission speed; default is 9600. WORD
and STOP are the number of data bits and stop bits. Data bits must
be in the range 5-8 and stop bits must be 1 or 2. Default is 8 data
bits and one stop bit. PARITY is one of `no', `odd', `even' and
defaults to `no'. The option `--device' can only be used in the
grub shell and is used to specify the tty device to be used in the
host operating system (*note Invoking the grub shell::).
The serial port is not used as a communication channel unless the
`terminal' command is used (*note terminal::).
This command is only available if GRUB is compiled with serial
support. See also *Note Serial terminal::.
13.2.13 setkey
--------------
-- Command: setkey [to_key from_key]
Change the keyboard map. The key FROM_KEY is mapped to the key
TO_KEY. If no argument is specified, reset key mappings. Note that
this command _does not_ exchange the keys. If you want to exchange
the keys, run this command again with the arguments exchanged,
like this:
grub> setkey capslock control
grub> setkey control capslock
A key must be an alphabet letter, a digit, or one of these symbols:
`escape', `exclam', `at', `numbersign', `dollar', `percent',
`caret', `ampersand', `asterisk', `parenleft', `parenright',
`minus', `underscore', `equal', `plus', `backspace', `tab',
`bracketleft', `braceleft', `bracketright', `braceright', `enter',
`control', `semicolon', `colon', `quote', `doublequote',
`backquote', `tilde', `shift', `backslash', `bar', `comma',
`less', `period', `greater', `slash', `question', `alt', `space',
`capslock', `FX' (`X' is a digit), and `delete'. This table
describes to which character each of the symbols corresponds:
`exclam'
`!'
`at'
`@'
`numbersign'
`#'
`dollar'
`$'
`percent'
`%'
`caret'
`^'
`ampersand'
`&'
`asterisk'
`*'
`parenleft'
`('
`parenright'
`)'
`minus'
`-'
`underscore'
`_'
`equal'
`='
`plus'
`+'
`bracketleft'
`['
`braceleft'
`{'
`bracketright'
`]'
`braceright'
`}'
`semicolon'
`;'
`colon'
`:'
`quote'
`''
`doublequote'
`"'
`backquote'
``'
`tilde'
`~'
`backslash'
`\'
`bar'
`|'
`comma'
`,'
`less'
`<'
`period'
`.'
`greater'
`>'
`slash'
`/'
`question'
`?'
`space'
` '
13.2.14 terminal
----------------
-- Command: terminal [`--dumb'] [`--no-echo'] [`--no-edit']
[`--timeout=secs'] [`--lines=lines'] [`--silent'] [`console']
[`serial'] [`hercules']
Select a terminal for user interaction. The terminal is assumed to
be VT100-compatible unless `--dumb' is specified. If both
`console' and `serial' are specified, then GRUB will use the one
where a key is entered first or the first when the timeout
expires. If neither are specified, the current setting is
reported. This command is only available if GRUB is compiled with
serial support. See also *Note Serial terminal::.
This may not make sense for most users, but GRUB supports Hercules
console as well. Hercules console is usable like the ordinary
console, and the usage is quite similar to that for serial
terminals: specify `hercules' as the argument.
The option `--lines' defines the number of lines in your terminal,
and it is used for the internal pager function. If you don't
specify this option, the number is assumed as 24.
The option `--silent' suppresses the message to prompt you to hit
any key. This might be useful if your system has no terminal
device.
The option `--no-echo' has GRUB not to echo back input characters.
This implies the option `--no-edit'.
The option `--no-edit' disables the BASH-like editing feature.
13.2.15 terminfo
----------------
-- Command: terminfo `--name=name' `--cursor-address=seq'
[`--clear-screen=seq'] [`--enter-standout-mode=seq']
[`--exit-standout-mode=seq']
Define the capabilities of your terminal. Use this command to
define escape sequences, if it is not vt100-compatible. You may
use `\e' for <ESC> and `^X' for a control character.
You can use the utility `grub-terminfo' to generate appropriate
arguments to this command. *Note Invoking grub-terminfo::.
If no option is specified, the current settings are printed.
13.2.16 tftpserver
------------------
-- Command: tftpserver ipaddr
*Caution:* This command exists only for backward compatibility.
Use `ifconfig' (*note ifconfig::) instead.
Override a TFTP server address returned by a BOOTP/DHCP/RARP
server. The argument IPADDR must be in dotted decimal format, like
`192.168.0.15'. This command is only available if GRUB is compiled
with netboot support. See also *Note Network::.
13.2.17 unhide
--------------
-- Command: unhide partition
Unhide the partition PARTITION by clearing the "hidden" bit in its
partition type code. This is useful only when booting DOS or
Windows and multiple primary partitions exist on one disk. See also
*Note DOS/Windows::.
13.3 The list of command-line and menu entry commands
=====================================================
These commands are usable in the command-line and in menu entries. If
you forget a command, you can run the command `help' (*note help::).
13.3.1 blocklist
----------------
-- Command: blocklist file
Print the block list notation of the file FILE. *Note Block list
syntax::.
13.3.2 boot
-----------
-- Command: boot
Boot the OS or chain-loader which has been loaded. Only necessary
if running the fully interactive command-line (it is implicit at
the end of a menu entry).
13.3.3 cat
----------
-- Command: cat file
Display the contents of the file FILE. This command may be useful
to remind you of your OS's root partition:
grub> cat /etc/fstab
13.3.4 chainloader
------------------
-- Command: chainloader [`--force'] file
Load FILE as a chain-loader. Like any other file loaded by the
filesystem code, it can use the blocklist notation to grab the
first sector of the current partition with `+1'. If you specify the
option `--force', then load FILE forcibly, whether it has a
correct signature or not. This is required when you want to load a
defective boot loader, such as SCO UnixWare 7.1 (*note SCO
UnixWare::).
13.3.5 cmp
----------
-- Command: cmp file1 file2
Compare the file FILE1 with the file FILE2. If they differ in
size, print the sizes like this:
Differ in size: 0x1234 [foo], 0x4321 [bar]
If the sizes are equal but the bytes at an offset differ, then
print the bytes like this:
Differ at the offset 777: 0xbe [foo], 0xef [bar]
If they are completely identical, nothing will be printed.
13.3.6 configfile
-----------------
-- Command: configfile file
Load FILE as a configuration file.
13.3.7 debug
------------
-- Command: debug
Toggle debug mode (by default it is off). When debug mode is on,
some extra messages are printed to show disk activity. This global
debug flag is mainly useful for GRUB developers when testing new
code.
13.3.8 displayapm
-----------------
-- Command: displayapm
Display APM BIOS information.
13.3.9 displaymem
-----------------
-- Command: displaymem
Display what GRUB thinks the system address space map of the
machine is, including all regions of physical RAM installed. GRUB's
"upper/lower memory" display uses the standard BIOS interface for
the available memory in the first megabyte, or "lower memory", and
a synthesized number from various BIOS interfaces of the memory
starting at 1MB and going up to the first chipset hole for "upper
memory" (the standard PC "upper memory" interface is limited to
reporting a maximum of 64MB).
13.3.10 embed
-------------
-- Command: embed stage1_5 device
Embed the Stage 1.5 STAGE1_5 in the sectors after the MBR if
DEVICE is a drive, or in the "boot loader" area if DEVICE is a FFS
partition or a ReiserFS partition.(1) (*note embed-Footnote-1::)
Print the number of sectors which STAGE1_5 occupies, if successful.
Usually, you don't need to run this command directly. *Note
setup::.
(1) The latter feature has not been implemented yet.
13.3.11 find
------------
-- Command: find filename
Search for the file name FILENAME in all mountable partitions and
print the list of the devices which contain the file. The file
name FILENAME should be an absolute file name like
`/boot/grub/stage1'.
13.3.12 fstest
--------------
-- Command: fstest
Toggle filesystem test mode. Filesystem test mode, when turned
on, prints out data corresponding to all the device reads and what
values are being sent to the low-level routines. The format is
`<PARTITION-OFFSET-SECTOR, BYTE-OFFSET, BYTE-LENGTH>' for
high-level reads inside a partition, and `[DISK-OFFSET-SECTOR]'
for low-level sector requests from the disk. Filesystem test mode
is turned off by any use of the `install' (*note install::) or
`testload' (*note testload::) commands.
13.3.13 geometry
----------------
-- Command: geometry drive [cylinder head sector [total_sector]]
Print the information for the drive DRIVE. In the grub shell, you
can set the geometry of the drive arbitrarily. The number of
cylinders, the number of heads, the number of sectors and the
number of total sectors are set to CYLINDER, HEAD, SECTOR and
TOTAL_SECTOR, respectively. If you omit TOTAL_SECTOR, then it will
be calculated based on the C/H/S values automatically.
13.3.14 halt
------------
-- Command: halt `--no-apm'
The command halts the computer. If the `--no-apm' option is
specified, no APM BIOS call is performed. Otherwise, the computer
is shut down using APM.
13.3.15 help
------------
-- Command: help `--all' [pattern ...]
Display helpful information about builtin commands. If you do not
specify PATTERN, this command shows short descriptions of most of
available commands. If you specify the option `--all' to this
command, short descriptions of rarely used commands (such as *Note
testload::) are displayed as well.
If you specify any PATTERNS, it displays longer information about
each of the commands which match those PATTERNS.
13.3.16 impsprobe
-----------------
-- Command: impsprobe
Probe the Intel Multiprocessor Specification 1.1 or 1.4
configuration table and boot the various CPUs which are found into
a tight loop. This command can be used only in the Stage 2, but
not in the grub shell.
13.3.17 initrd
--------------
-- Command: initrd file ...
Load an initial ramdisk for a Linux format boot image and set the
appropriate parameters in the Linux setup area in memory. See also
*Note GNU/Linux::.
13.3.18 install
---------------
-- Command: install [`--force-lba'] [`--stage2=os_stage2_file']
stage1_file [`d'] dest_dev stage2_file [addr] [`p']
[config_file] [real_config_file]
This command is fairly complex, and you should not use this command
unless you are familiar with GRUB. Use `setup' (*note setup::)
instead.
In short, it will perform a full install presuming the Stage 2 or
Stage 1.5(1) (*note install-Footnote-1::) is in its final install
location.
In slightly more detail, it will load STAGE1_FILE, validate that
it is a GRUB Stage 1 of the right version number, install in it a
blocklist for loading STAGE2_FILE as a Stage 2. If the option `d'
is present, the Stage 1 will always look for the actual disk
STAGE2_FILE was installed on, rather than using the booting drive.
The Stage 2 will be loaded at address ADDR, which must be `0x8000'
for a true Stage 2, and `0x2000' for a Stage 1.5. If ADDR is not
present, GRUB will determine the address automatically. It then
writes the completed Stage 1 to the first block of the device
DEST_DEV. If the options `p' or CONFIG_FILE are present, then it
reads the first block of stage2, modifies it with the values of
the partition STAGE2_FILE was found on (for `p') or places the
string CONFIG_FILE into the area telling the stage2 where to look
for a configuration file at boot time. Likewise, if
REAL_CONFIG_FILE is present and STAGE2_FILE is a Stage 1.5, then
the Stage 2 CONFIG_FILE is patched with the configuration file
name REAL_CONFIG_FILE. This command preserves the DOS BPB (and for
hard disks, the partition table) of the sector the Stage 1 is to
be installed into.
*Caution:* Several buggy BIOSes don't pass a booting drive
properly when booting from a hard disk drive. Therefore, you will
unfortunately have to specify the option `d', whether your Stage2
resides at the booting drive or not, if you have such a BIOS. We
know these are defective in this way:
Fujitsu LifeBook 400 BIOS version 31J0103A
HP Vectra XU 6/200 BIOS version GG.06.11
*Caution2:* A number of BIOSes don't return a correct LBA support
bitmap even if they do have the support. So GRUB provides a
solution to ignore the wrong bitmap, that is, the option
`--force-lba'. Don't use this option if you know that your BIOS
doesn't have LBA support.
*Caution3:* You must specify the option `--stage2' in the grub
shell, if you cannot unmount the filesystem where your stage2 file
resides. The argument should be the file name in your operating
system.
(1) They're loaded the same way, so we will refer to the Stage 1.5
as a Stage 2 from now on.
13.3.19 ioprobe
---------------
-- Command: ioprobe drive
Probe I/O ports used for the drive DRIVE. This command will list
the I/O ports on the screen. For technical information, *Note
Internals::.
13.3.20 kernel
--------------
-- Command: kernel [`--type=type'] [`--no-mem-option'] file ...
Attempt to load the primary boot image (Multiboot a.out or ELF,
Linux zImage or bzImage, FreeBSD a.out, NetBSD a.out, etc.) from
FILE. The rest of the line is passed verbatim as the "kernel
command-line". Any modules must be reloaded after using this
command.
This command also accepts the option `--type' so that you can
specify the kernel type of FILE explicitly. The argument TYPE must
be one of these: `netbsd', `freebsd', `openbsd', `linux',
`biglinux', and `multiboot'. However, you need to specify it only
if you want to load a NetBSD ELF kernel, because GRUB can
automatically determine a kernel type in the other cases, quite
safely.
The option `--no-mem-option' is effective only for Linux. If the
option is specified, GRUB doesn't pass the option `mem=' to the
kernel. This option is implied for Linux kernels 2.4.18 and newer.
13.3.21 lock
------------
-- Command: lock
Prevent normal users from executing arbitrary menu entries. You
must use the command `password' if you really want this command to
be useful (*note password::).
This command is used in a menu, as shown in this example:
title This entry is too dangerous to be executed by normal users
lock
root (hd0,a)
kernel /no-security-os
See also *Note Security::.
13.3.22 makeactive
------------------
-- Command: makeactive
Set the active partition on the root disk to GRUB's root device.
This command is limited to _primary_ PC partitions on a hard disk.
13.3.23 map
-----------
-- Command: map to_drive from_drive
Map the drive FROM_DRIVE to the drive TO_DRIVE. This is necessary
when you chain-load some operating systems, such as DOS, if such
an OS resides at a non-first drive. Here is an example:
grub> map (hd0) (hd1)
grub> map (hd1) (hd0)
The example exchanges the order between the first hard disk and the
second hard disk. See also *Note DOS/Windows::.
13.3.24 md5crypt
----------------
-- Command: md5crypt
Prompt to enter a password, and encrypt it in MD5 format. The
encrypted password can be used with the command `password' (*note
password::). See also *Note Security::.
13.3.25 module
--------------
-- Command: module file ...
Load a boot module FILE for a Multiboot format boot image (no
interpretation of the file contents are made, so the user of this
command must know what the kernel in question expects). The rest
of the line is passed as the "module command-line", like the
`kernel' command. You must load a Multiboot kernel image before
loading any module. See also *Note modulenounzip::.
13.3.26 modulenounzip
---------------------
-- Command: modulenounzip file ...
The same as `module' (*note module::), except that automatic
decompression is disabled.
13.3.27 pause
-------------
-- Command: pause message ...
Print the MESSAGE, then wait until a key is pressed. Note that
placing <^G> (ASCII code 7) in the message will cause the speaker
to emit the standard beep sound, which is useful when prompting
the user to change floppies.
13.3.28 quit
------------
-- Command: quit
Exit from the grub shell `grub' (*note Invoking the grub shell::).
This command can be used only in the grub shell.
13.3.29 reboot
--------------
-- Command: reboot
Reboot the computer.
13.3.30 read
------------
-- Command: read addr
Read a 32-bit value from memory at address ADDR and display it in
hex format.
13.3.31 root
------------
-- Command: root device [hdbias]
Set the current "root device" to the device DEVICE, then attempt
to mount it to get the partition size (for passing the partition
descriptor in `ES:ESI', used by some chain-loaded boot loaders),
the BSD drive-type (for booting BSD kernels using their native
boot format), and correctly determine the PC partition where a BSD
sub-partition is located. The optional HDBIAS parameter is a
number to tell a BSD kernel how many BIOS drive numbers are on
controllers before the current one. For example, if there is an
IDE disk and a SCSI disk, and your FreeBSD root partition is on
the SCSI disk, then use a `1' for HDBIAS.
See also *Note rootnoverify::.
13.3.32 rootnoverify
--------------------
-- Command: rootnoverify device [hdbias]
Similar to `root' (*note root::), but don't attempt to mount the
partition. This is useful for when an OS is outside of the area of
the disk that GRUB can read, but setting the correct root device
is still desired. Note that the items mentioned in `root' above
which derived from attempting the mount will _not_ work correctly.
13.3.33 savedefault
-------------------
-- Command: savedefault num
Save the current menu entry or NUM if specified as a default
entry. Here is an example:
default saved
timeout 10
title GNU/Linux
root (hd0,0)
kernel /boot/vmlinuz root=/dev/sda1 vga=ext
initrd /boot/initrd
savedefault
title FreeBSD
root (hd0,a)
kernel /boot/loader
savedefault
With this configuration, GRUB will choose the entry booted
previously as the default entry.
You can specify `fallback' instead of a number. Then, next
fallback entry is saved. Next fallback entry is chosen from
fallback entries. Normally, this will be the first entry in
fallback ones.
See also *Note default:: and *Note Invoking grub-set-default::.
13.3.34 setup
-------------
-- Command: setup [`--force-lba'] [`--stage2=os_stage2_file']
[`--prefix=dir'] install_device [image_device]
Set up the installation of GRUB automatically. This command uses
the more flexible command `install' (*note install::) in the
backend and installs GRUB into the device INSTALL_DEVICE. If
IMAGE_DEVICE is specified, then find the GRUB images (*note
Images::) in the device IMAGE_DEVICE, otherwise use the current
"root device", which can be set by the command `root'. If
INSTALL_DEVICE is a hard disk, then embed a Stage 1.5 in the disk
if possible.
The option `--prefix' specifies the directory under which GRUB
images are put. If it is not specified, GRUB automatically
searches them in `/boot/grub' and `/grub'.
The options `--force-lba' and `--stage2' are just passed to
`install' if specified. *Note install::, for more information.
13.3.35 testload
----------------
-- Command: testload file
Read the entire contents of FILE in several different ways and
compare them, to test the filesystem code. The output is somewhat
cryptic, but if no errors are reported and the final `i=X,
filepos=Y' reading has X and Y equal, then it is definitely
consistent, and very likely works correctly subject to a
consistent offset error. If this test succeeds, then a good next
step is to try loading a kernel.
13.3.36 testvbe
---------------
-- Command: testvbe mode
Test the VESA BIOS EXTENSION mode MODE. This command will switch
your video card to the graphics mode, and show an endless
animation. Hit any key to return. See also *Note vbeprobe::.
13.3.37 uppermem
----------------
-- Command: uppermem kbytes
Force GRUB to assume that only KBYTES kilobytes of upper memory
are installed. Any system address range maps are discarded.
*Caution:* This should be used with great caution, and should only
be necessary on some old machines. GRUB's BIOS probe can pick up
all RAM on all new machines the author has ever heard of. It can
also be used for debugging purposes to lie to an OS.
13.3.38 vbeprobe
----------------
-- Command: vbeprobe [mode]
Probe VESA BIOS EXTENSION information. If the mode MODE is
specified, show only the information about MODE. Otherwise, this
command lists up available VBE modes on the screen. See also *Note
testvbe::.
14 Error messages reported by GRUB
**********************************
This chapter describes error messages reported by GRUB when you
encounter trouble. *Note Invoking the grub shell::, if your problem is
specific to the grub shell.
14.1 Errors reported by the Stage 1
===================================
The general way that the Stage 1 handles errors is to print an error
string and then halt. Pressing `<CTRL>-<ALT>-<DEL>' will reboot.
The following is a comprehensive list of error messages for the
Stage 1:
Hard Disk Error
The stage2 or stage1.5 is being read from a hard disk, and the
attempt to determine the size and geometry of the hard disk failed.
Floppy Error
The stage2 or stage1.5 is being read from a floppy disk, and the
attempt to determine the size and geometry of the floppy disk
failed. It's listed as a separate error since the probe sequence
is different than for hard disks.
Read Error
A disk read error happened while trying to read the stage2 or
stage1.5.
Geom Error
The location of the stage2 or stage1.5 is not in the portion of
the disk supported directly by the BIOS read calls. This could
occur because the BIOS translated geometry has been changed by the
user or the disk is moved to another machine or controller after
installation, or GRUB was not installed using itself (if it was,
the Stage 2 version of this error would have been seen during that
process and it would not have completed the install).
14.2 Errors reported by the Stage 1.5
=====================================
The general way that the Stage 1.5 handles errors is to print an error
number in the form `Error NUM' and then halt. Pressing
`<CTRL>-<ALT>-<DEL>' will reboot.
The error numbers correspond to the errors reported by Stage 2.
*Note Stage2 errors::.
14.3 Errors reported by the Stage 2
===================================
The general way that the Stage 2 handles errors is to abort the
operation in question, print an error string, then (if possible) either
continue based on the fact that an error occurred or wait for the user
to deal with the error.
The following is a comprehensive list of error messages for the
Stage 2 (error numbers for the Stage 1.5 are listed before the colon in
each description):
1 : Filename must be either an absolute filename or blocklist
This error is returned if a file name is requested which doesn't
fit the syntax/rules listed in the *Note Filesystem::.
2 : Bad file or directory type
This error is returned if a file requested is not a regular file,
but something like a symbolic link, directory, or FIFO.
3 : Bad or corrupt data while decompressing file
This error is returned if the run-length decompression code gets an
internal error. This is usually from a corrupt file.
4 : Bad or incompatible header in compressed file
This error is returned if the file header for a supposedly
compressed file is bad.
5 : Partition table invalid or corrupt
This error is returned if the sanity checks on the integrity of the
partition table fail. This is a bad sign.
6 : Mismatched or corrupt version of stage1/stage2
This error is returned if the install command points to
incompatible or corrupt versions of the stage1 or stage2. It can't
detect corruption in general, but this is a sanity check on the
version numbers, which should be correct.
7 : Loading below 1MB is not supported
This error is returned if the lowest address in a kernel is below
the 1MB boundary. The Linux zImage format is a special case and
can be handled since it has a fixed loading address and maximum
size.
8 : Kernel must be loaded before booting
This error is returned if GRUB is told to execute the boot sequence
without having a kernel to start.
9 : Unknown boot failure
This error is returned if the boot attempt did not succeed for
reasons which are unknown.
10 : Unsupported Multiboot features requested
This error is returned when the Multiboot features word in the
Multiboot header requires a feature that is not recognized. The
point of this is that the kernel requires special handling which
GRUB is probably unable to provide.
11 : Unrecognized device string
This error is returned if a device string was expected, and the
string encountered didn't fit the syntax/rules listed in the *Note
Filesystem::.
12 : Invalid device requested
This error is returned if a device string is recognizable but does
not fall under the other device errors.
13 : Invalid or unsupported executable format
This error is returned if the kernel image being loaded is not
recognized as Multiboot or one of the supported native formats
(Linux zImage or bzImage, FreeBSD, or NetBSD).
14 : Filesystem compatibility error, cannot read whole file
Some of the filesystem reading code in GRUB has limits on the
length of the files it can read. This error is returned when the
user runs into such a limit.
15 : File not found
This error is returned if the specified file name cannot be found,
but everything else (like the disk/partition info) is OK.
16 : Inconsistent filesystem structure
This error is returned by the filesystem code to denote an internal
error caused by the sanity checks of the filesystem structure on
disk not matching what it expects. This is usually caused by a
corrupt filesystem or bugs in the code handling it in GRUB.
17 : Cannot mount selected partition
This error is returned if the partition requested exists, but the
filesystem type cannot be recognized by GRUB.
18 : Selected cylinder exceeds maximum supported by BIOS
This error is returned when a read is attempted at a linear block
address beyond the end of the BIOS translated area. This generally
happens if your disk is larger than the BIOS can handle (512MB for
(E)IDE disks on older machines or larger than 8GB in general).
19 : Linux kernel must be loaded before initrd
This error is returned if the initrd command is used before
loading a Linux kernel.
20 : Multiboot kernel must be loaded before modules
This error is returned if the module load command is used before
loading a Multiboot kernel. It only makes sense in this case
anyway, as GRUB has no idea how to communicate the presence of
such modules to a non-Multiboot-aware kernel.
21 : Selected disk does not exist
This error is returned if the device part of a device- or full
file name refers to a disk or BIOS device that is not present or
not recognized by the BIOS in the system.
22 : No such partition
This error is returned if a partition is requested in the device
part of a device- or full file name which isn't on the selected
disk.
23 : Error while parsing number
This error is returned if GRUB was expecting to read a number and
encountered bad data.
24 : Attempt to access block outside partition
This error is returned if a linear block address is outside of the
disk partition. This generally happens because of a corrupt
filesystem on the disk or a bug in the code handling it in GRUB
(it's a great debugging tool).
25 : Disk read error
This error is returned if there is a disk read error when trying to
probe or read data from a particular disk.
26 : Too many symbolic links
This error is returned if the link count is beyond the maximum
(currently 5), possibly the symbolic links are looped.
27 : Unrecognized command
This error is returned if an unrecognized command is entered on the
command-line or in a boot sequence section of a configuration file
and that entry is selected.
28 : Selected item cannot fit into memory
This error is returned if a kernel, module, or raw file load
command is either trying to load its data such that it won't fit
into memory or it is simply too big.
29 : Disk write error
This error is returned if there is a disk write error when trying
to write to a particular disk. This would generally only occur
during an install of set active partition command.
30 : Invalid argument
This error is returned if an argument specified to a command is
invalid.
31 : File is not sector aligned
This error may occur only when you access a ReiserFS partition by
block-lists (e.g. the command `install'). In this case, you should
mount the partition with the `-o notail' option.
32 : Must be authenticated
This error is returned if you try to run a locked entry. You should
enter a correct password before running such an entry.
33 : Serial device not configured
This error is returned if you try to change your terminal to a
serial one before initializing any serial device.
34 : No spare sectors on the disk
This error is returned if a disk doesn't have enough spare space.
This happens when you try to embed Stage 1.5 into the unused
sectors after the MBR, but the first partition starts right after
the MBR or they are used by EZ-BIOS.
15 Invoking the grub shell
**************************
This chapter documents the grub shell `grub'. Note that the grub shell
is an emulator; it doesn't run under the native environment, so it
sometimes does something wrong. Therefore, you shouldn't trust it too
much. If there is anything wrong with it, don't hesitate to try the
native GRUB environment, especially when it guesses a wrong map between
BIOS drives and OS devices.
15.1 Introduction into the grub shell
=====================================
You can use the command `grub' for installing GRUB under your operating
systems and for a testbed when you add a new feature into GRUB or when
fixing a bug. `grub' is almost the same as the Stage 2, and, in fact,
it shares the source code with the Stage 2 and you can use the same
commands (*note Commands::) in `grub'. It is emulated by replacing BIOS
calls with UNIX system calls and libc functions.
The command `grub' accepts the following options:
`--help'
Print a summary of the command-line options and exit.
`--version'
Print the version number of GRUB and exit.
`--verbose'
Print some verbose messages for debugging purpose.
`--device-map=FILE'
Use the device map file FILE. The format is described in *Note
Device map::.
`--no-floppy'
Do not probe any floppy drive. This option has no effect if the
option `--device-map' is specified (*note Device map::).
`--probe-second-floppy'
Probe the second floppy drive. If this option is not specified,
the grub shell does not probe it, as that sometimes takes a long
time. If you specify the device map file (*note Device map::), the
grub shell just ignores this option.
`--config-file=FILE'
Read the configuration file FILE instead of `/boot/grub/menu.lst'.
The format is the same as the normal GRUB syntax. See *Note
Filesystem::, for more information.
`--boot-drive=DRIVE'
Set the stage2 BOOT_DRIVE to DRIVE. This argument should be an
integer (decimal, octal or hexadecimal).
`--install-partition=PAR'
Set the stage2 INSTALL_PARTITION to PAR. This argument should be
an integer (decimal, octal or hexadecimal).
`--no-config-file'
Do not use the configuration file even if it can be read.
`--no-curses'
Do not use the screen handling interface by the curses even if it
is available.
`--batch'
This option has the same meaning as `--no-config-file --no-curses'.
`--read-only'
Disable writing to any disk.
`--hold'
Wait until a debugger will attach. This option is useful when you
want to debug the startup code.
15.2 How to install GRUB via `grub'
===================================
The installation procedure is the same as under the "native" Stage 2.
*Note Installation::, for more information. The command `grub'-specific
information is described here.
What you should be careful about is "buffer cache". `grub' makes use
of raw devices instead of filesystems that your operating systems
serve, so there exists a potential problem that some cache
inconsistency may corrupt your filesystems. What we recommend is:
* If you can unmount drives to which GRUB may write any amount of
data, unmount them before running `grub'.
* If a drive cannot be unmounted but can be mounted with the
read-only flag, mount it in read-only mode. That should be secure.
* If a drive must be mounted with the read-write flag, make sure
that no activity is being done on it while the command `grub' is
running.
* Reboot your operating system as soon as possible. This is probably
not required if you follow the rules above, but reboot is the most
secure way.
In addition, enter the command `quit' when you finish the
installation. That is _very important_ because `quit' makes the buffer
cache consistent. Do not push <C-c>.
If you want to install GRUB non-interactively, specify `--batch'
option in the command-line. This is a simple example:
#!/bin/sh
# Use /usr/sbin/grub if you are on an older system.
/sbin/grub --batch <<EOT 1>/dev/null 2>/dev/null
root (hd0,0)
setup (hd0)
quit
EOT
15.3 The map between BIOS drives and OS devices
===============================================
When you specify the option `--device-map' (*note Basic usage::), the
grub shell creates the "device map file" automatically unless it
already exists. The file name `/boot/grub/device.map' is preferred.
If the device map file exists, the grub shell reads it to map BIOS
drives to OS devices. This file consists of lines like this:
DEVICE FILE
DEVICE is a drive specified in the GRUB syntax (*note Device
syntax::), and FILE is an OS file, which is normally a device file.
The reason why the grub shell gives you the device map file is that
it cannot guess the map between BIOS drives and OS devices correctly in
some environments. For example, if you exchange the boot sequence
between IDE and SCSI in your BIOS, it gets the order wrong.
Thus, edit the file if the grub shell makes a mistake. You can put
any comments in the file if needed, as the grub shell assumes that a
line is just a comment if the first character is `#'.
16 Invoking grub-install
************************
The program `grub-install' installs GRUB on your drive using the grub
shell (*note Invoking the grub shell::). You must specify the device
name on which you want to install GRUB, like this:
grub-install INSTALL_DEVICE
The device name INSTALL_DEVICE is an OS device name or a GRUB device
name.
`grub-install' accepts the following options:
`--help'
Print a summary of the command-line options and exit.
`--version'
Print the version number of GRUB and exit.
`--force-lba'
Force GRUB to use LBA mode even for a buggy BIOS. Use this option
only if your BIOS doesn't work properly in LBA mode even though it
supports LBA mode.
`--root-directory=DIR'
Install GRUB images under the directory DIR instead of the root
directory. This option is useful when you want to install GRUB
into a separate partition or a removable disk. Here is an example
in which you have a separate "boot" partition which is mounted on
`/boot':
grub-install --root-directory=/boot hd0
`--grub-shell=FILE'
Use FILE as the grub shell. You can append arbitrary options to
FILE after the file name, like this:
grub-install --grub-shell="grub --read-only" /dev/fd0
`--recheck'
Recheck the device map, even if `/boot/grub/device.map' already
exists. You should use this option whenever you add/remove a disk
into/from your computer.
17 Invoking grub-md5-crypt
**************************
The program `grub-md5-crypt' encrypts a password in MD5 format. This
is just a frontend of the grub shell (*note Invoking the grub shell::).
Passwords encrypted by this program can be used with the command
`password' (*note password::).
`grub-md5-crypt' accepts the following options:
`--help'
Print a summary of the command-line options and exit.
`--version'
Print the version information and exit.
`--grub-shell=FILE'
Use FILE as the grub shell.
18 Invoking grub-terminfo
*************************
The program `grub-terminfo' generates a terminfo command from a
terminfo name (*note terminfo::). The result can be used in the
configuration file, to define escape sequences. Because GRUB assumes
that your terminal is vt100-compatible by default, this would be useful
only if your terminal is uncommon (such as vt52).
`grub-terminfo' accepts the following options:
`--help'
Print a summary of the command-line options and exit.
`--version'
Print the version information and exit.
You must specify one argument to this command. For example:
grub-terminfo vt52
19 Invoking grub-set-default
****************************
The program `grub-set-default' sets the default boot entry for GRUB.
This automatically creates a file named `default' under your GRUB
directory (i.e. `/boot/grub'), if it is not present. This file is used
to determine the default boot entry when GRUB boots up your system when
you use `default saved' in your configuration file (*note default::),
and to save next default boot entry when you use `savedefault' in a
boot entry (*note savedefault::).
`grub-set-default' accepts the following options:
`--help'
Print a summary of the command-line options and exit.
`--version'
Print the version information and exit.
`--root-directory=DIR'
Use the directory DIR instead of the root directory (i.e. `/') to
define the location of the default file. This is useful when you
mount a disk which is used for another system.
You must specify a single argument to `grub-set-default'. This
argument is normally the number of a default boot entry. For example,
if you have this configuration file:
default saved
timeout 10
title GNU/Hurd
root (hd0,0)
...
title GNU/Linux
root (hd0,1)
...
and if you want to set the next default boot entry to GNU/Linux, you
may execute this command:
grub-set-default 1
Because the entry for GNU/Linux is `1'. Note that entries are
counted from zero. So, if you want to specify GNU/Hurd here, then you
should specify `0'.
This feature is very useful if you want to test a new kernel or to
make your system quite robust. *Note Making your system robust::, for
more hints about how to set up a robust system.
20 Invoking mbchk
*****************
The program `mbchk' checks for the format of a Multiboot kernel. We
recommend using this program before booting your own kernel by GRUB.
`mbchk' accepts the following options:
`--help'
Print a summary of the command-line options and exit.
`--version'
Print the version number of GRUB and exit.
`--quiet'
Suppress all normal output.
Appendix A How to obtain and build GRUB
***************************************
*Caution:* GRUB requires binutils-2.9.1.0.23 or later because the
GNU assembler has been changed so that it can produce real 16bits
machine code between 2.9.1 and 2.9.1.0.x. See
`http://sources.redhat.com/binutils/', to obtain information on
how to get the latest version.
GRUB is available from the GNU alpha archive site
`ftp://alpha.gnu.org/gnu/grub' or any of its mirrors. The file will be
named grub-version.tar.gz. The current version is 0.97, so the file you
should grab is:
`ftp://alpha.gnu.org/gnu/grub/grub-0.97.tar.gz'
To unbundle GRUB use the instruction:
zcat grub-0.97.tar.gz | tar xvf -
which will create a directory called `grub-0.97' with all the
sources. You can look at the file `INSTALL' for detailed instructions
on how to build and install GRUB, but you should be able to just do:
cd grub-0.97
./configure
make install
This will install the grub shell `grub' (*note Invoking the grub
shell::), the Multiboot checker `mbchk' (*note Invoking mbchk::), and
the GRUB images. This will also install the GRUB manual.
Also, the latest version is available from the CVS. See
`http://savannah.gnu.org/cvs/?group=grub' for more information.
Appendix B Reporting bugs
*************************
These are the guideline for how to report bugs. Take a look at this
list below before you submit bugs:
1. Before getting unsettled, read this manual through and through.
Also, see the GNU GRUB FAQ
(http://www.gnu.org/software/grub/grub-faq.html).
2. Always mention the information on your GRUB. The version number
and the configuration are quite important. If you build it
yourself, write the options specified to the configure script and
your operating system, including the versions of gcc and binutils.
3. If you have trouble with the installation, inform us of how you
installed GRUB. Don't omit error messages, if any. Just `GRUB hangs
up when it boots' is not enough.
The information on your hardware is also essential. These are
especially important: the geometries and the partition tables of
your hard disk drives and your BIOS.
4. If GRUB cannot boot your operating system, write down _everything_
you see on the screen. Don't paraphrase them, like `The foo OS
crashes with GRUB, even though it can boot with the bar boot
loader just fine'. Mention the commands you executed, the messages
printed by them, and information on your operating system
including the version number.
5. Explain what you wanted to do. It is very useful to know your
purpose and your wish, and how GRUB didn't satisfy you.
6. If you can investigate the problem yourself, please do. That will
give you and us much more information on the problem. Attaching a
patch is even better.
When you attach a patch, make the patch in unified diff format, and
write ChangeLog entries. But, even when you make a patch, don't
forget to explain the problem, so that we can understand what your
patch is for.
7. Write down anything that you think might be related. Please
understand that we often need to reproduce the same problem you
encounterred in our environment. So your information should be
sufficient for us to do the same thing--Don't forget that we
cannot see your computer directly. If you are not sure whether to
state a fact or leave it out, state it! Reporting too many things
is much better than omitting something important.
If you follow the guideline above, submit a report to the Bug
Tracking System (http://savannah.gnu.org/bugs/?group=grub).
Alternatively, you can submit a report via electronic mail to
<bug-grub@gnu.org>, but we strongly recommend that you use the Bug
Tracking System, because e-mail can be passed over easily.
Once we get your report, we will try to fix the bugs.
Appendix C Where GRUB will go
*****************************
We started the next generation of GRUB, GRUB 2. This will include
internationalization, dynamic module loading, real memory management,
multiple architecture support, a scripting language, and many other
nice feature. If you are interested in the development of GRUB 2, take
a look at the homepage (http://www.gnu.org/software/grub/grub.html).
Appendix D Hacking GRUB
***********************
This chapter documents the user-invisible aspect of GRUB.
As a general rule of software development, it is impossible to keep
the descriptions of the internals up-to-date, and it is quite hard to
document everything. So refer to the source code, whenever you are not
satisfied with this documentation. Please assume that this gives just
hints to you.
D.1 The memory map of various components
========================================
GRUB consists of two distinct components, called "stages", which are
loaded at different times in the boot process. Because they run
mutual-exclusively, sometimes a memory area overlaps with another
memory area. And, even in one stage, a single memory area can be used
for various purposes, because their usages are mutually exclusive.
Here is the memory map of the various components:
0 to 4K-1
BIOS and real mode interrupts
0x07BE to 0x07FF
Partition table passed to another boot loader
down from 8K-1
Real mode stack
0x2000 to ?
The optional Stage 1.5 is loaded here
0x2000 to 0x7FFF
Command-line buffer for Multiboot kernels and modules
0x7C00 to 0x7DFF
Stage 1 is loaded here by BIOS or another boot loader
0x7F00 to 0x7F42
LBA drive parameters
0x8000 to ?
Stage2 is loaded here
The end of Stage 2 to 416K-1
Heap, in particular used for the menu
down from 416K-1
Protected mode stack
416K to 448K-1
Filesystem buffer
448K to 479.5K-1
Raw device buffer
479.5K to 480K-1
512-byte scratch area
480K to 512K-1
Buffers for various functions, such as password, command-line, cut
and paste, and completion.
The last 1K of lower memory
Disk swapping code and data
See the file `stage2/shared.h', for more information.
D.2 Embedded variables in GRUB
==============================
Stage 1 and Stage 2 have embedded variables whose locations are
well-defined, so that the installation can patch the binary file
directly without recompilation of the stages.
In Stage 1, these are defined:
`0x3E'
The version number (not GRUB's, but the installation mechanism's).
`0x40'
The boot drive. If it is 0xFF, use a drive passed by BIOS.
`0x41'
The flag for if forcing LBA.
`0x42'
The starting address of Stage 2.
`0x44'
The first sector of Stage 2.
`0x48'
The starting segment of Stage 2.
`0x1FE'
The signature (`0xAA55').
See the file `stage1/stage1.S', for more information.
In the first sector of Stage 1.5 and Stage 2, the block lists are
recorded between `firstlist' and `lastlist'. The address of `lastlist'
is determined when assembling the file `stage2/start.S'.
The trick here is that it is actually read backward, and the first
8-byte block list is not read here, but after the pointer is decremented
8 bytes, then after reading it, it decrements again, reads, and so on,
until it is finished. The terminating condition is when the number of
sectors to be read in the next block list is zero.
The format of a block list can be seen from the example in the code
just before the `firstlist' label. Note that it is always from the
beginning of the disk, but _not_ relative to the partition boundaries.
In the second sector of Stage 1.5 and Stage 2, these are defined:
`0x6'
The version number (likewise, the installation mechanism's).
`0x8'
The installed partition.
`0xC'
The saved entry number.
`0x10'
The identifier.
`0x11'
The flag for if forcing LBA.
`0x12'
The version string (GRUB's).
`0x12' + "the length of the version string"
The name of a configuration file.
See the file `stage2/asm.S', for more information.
D.3 The generic interface for filesystems
=========================================
For any particular partition, it is presumed that only one of the
"normal" filesystems such as FAT, FFS, or ext2fs can be used, so there
is a switch table managed by the functions in `disk_io.c'. The notation
is that you can only "mount" one at a time.
The block list filesystem has a special place in the system. In
addition to the "normal" filesystem (or even without one mounted), you
can access disk blocks directly (in the indicated partition) via the
block list notation. Using the block list filesystem doesn't effect any
other filesystem mounts.
The variables which can be read by the filesystem backend are:
`current_drive'
The current BIOS drive number (numbered from 0, if a floppy, and
numbered from 0x80, if a hard disk).
`current_partition'
The current partition number.
`current_slice'
The current partition type.
`saved_drive'
The "drive" part of the root device.
`saved_partition'
The "partition" part of the root device.
`part_start'
The current partition starting address, in sectors.
`part_length'
The current partition length, in sectors.
`print_possibilities'
True when the `dir' function should print the possible completions
of a file, and false when it should try to actually open a file of
that name.
`FSYS_BUF'
Filesystem buffer which is 32K in size, to use in any way which the
filesystem backend desires.
The variables which need to be written by a filesystem backend are:
`filepos'
The current position in the file, in sectors.
*Caution:* the value of FILEPOS can be changed out from under the
filesystem code in the current implementation. Don't depend on it
being the same for later calls into the backend code!
`filemax'
The length of the file.
`disk_read_func'
The value of DISK_READ_HOOK _only_ during reading of data for the
file, not any other fs data, inodes, FAT tables, whatever, then
set to `NULL' at all other times (it will be `NULL' by default).
If this isn't done correctly, then the `testload' and `install'
commands won't work correctly.
The functions expected to be used by the filesystem backend are:
`devread'
Only read sectors from within a partition. Sector 0 is the first
sector in the partition.
`grub_read'
If the backend uses the block list code, then `grub_read' can be
used, after setting BLOCK_FILE to 1.
`print_a_completion'
If PRINT_POSSIBILITIES is true, call `print_a_completion' for each
possible file name. Otherwise, the file name completion won't work.
The functions expected to be defined by the filesystem backend are
described at least moderately in the file `filesys.h'. Their usage is
fairly evident from their use in the functions in `disk_io.c', look for
the use of the FSYS_TABLE array.
*Caution:* The semantics are such that then `mount'ing the
filesystem, presume the filesystem buffer `FSYS_BUF' is corrupted, and
(re-)load all important contents. When opening and reading a file,
presume that the data from the `mount' is available, and doesn't get
corrupted by the open/read (i.e. multiple opens and/or reads will be
done with only one mount if in the same filesystem).
D.4 The generic interface for built-ins
=======================================
GRUB built-in commands are defined in a uniformal interface, whether
they are menu-specific or can be used anywhere. The definition of a
builtin command consists of two parts: the code itself and the table of
the information.
The code must be a function which takes two arguments, a command-line
string and flags, and returns an `int' value. The "flags" argument
specifies how the function is called, using a bit mask. The return
value must be zero if successful, otherwise non-zero. So it is normally
enough to return ERRNUM.
The table of the information is represented by the structure `struct
builtin', which contains the name of the command, a pointer to the
function, flags, a short description of the command and a long
description of the command. Since the descriptions are used only for
help messages interactively, you don't have to define them, if the
command may not be called interactively (such as `title').
The table is finally registered in the table BUILTIN_TABLE, so that
`run_script' and `enter_cmdline' can find the command. See the files
`cmdline.c' and `builtins.c', for more details.
D.5 The bootstrap mechanism used in GRUB
========================================
The disk space can be used in a boot loader is very restricted because
a MBR (*note MBR::) is only 512 bytes but it also contains a partition
table (*note Partition table::) and a BPB. So the question is how to
make a boot loader code enough small to be fit in a MBR.
However, GRUB is a very large program, so we break GRUB into 2 (or 3)
distinct components, "Stage 1" and "Stage 2" (and optionally "Stage
1.5"). *Note Memory map::, for more information.
We embed Stage 1 in a MBR or in the boot sector of a partition, and
place Stage 2 in a filesystem. The optional Stage 1.5 can be installed
in a filesystem, in the "boot loader" area in a FFS or a ReiserFS, and
in the sectors right after a MBR, because Stage 1.5 is enough small and
the sectors right after a MBR is normally an unused region. The size of
this region is the number of sectors per head minus 1.
Thus, all Stage1 must do is just load Stage2 or Stage1.5. But even if
Stage 1 needs not to support the user interface or the filesystem
interface, it is impossible to make Stage 1 less than 400 bytes, because
GRUB should support both the CHS mode and the LBA mode (*note Low-level
disk I/O::).
The solution used by GRUB is that Stage 1 loads only the first
sector of Stage 2 (or Stage 1.5) and Stage 2 itself loads the rest. The
flow of Stage 1 is:
1. Initialize the system briefly.
2. Detect the geometry and the accessing mode of the "loading drive".
3. Load the first sector of Stage 2.
4. Jump to the starting address of the Stage 2.
The flow of Stage 2 (and Stage 1.5) is:
1. Load the rest of itself to the real starting address, that is, the
starting address plus 512 bytes. The block lists are stored in the
last part of the first sector.
2. Long jump to the real starting address.
Note that Stage 2 (or Stage 1.5) does not probe the geometry or the
accessing mode of the "loading drive", since Stage 1 has already probed
them.
D.6 How to probe I/O ports used by INT 13H
==========================================
FIXME: I will write this chapter after implementing the new technique.
D.7 How to detect all installed RAM
===================================
FIXME: I doubt if Erich didn't write this chapter only himself wholly,
so I will rewrite this chapter.
D.8 INT 13H disk I/O interrupts
===============================
FIXME: I'm not sure where some part of the original chapter is derived,
so I will rewrite this chapter.
D.9 The structure of Master Boot Record
=======================================
FIXME: Likewise.
D.10 The format of partition tables
===================================
FIXME: Probably the original chapter is derived from "How It Works", so
I will rewrite this chapter.
D.11 Where and how you should send patches
==========================================
When you write patches for GRUB, please send them to the mailing list
<bug-grub@gnu.org>. Here is the list of items of which you should take
care:
* Please make your patch as small as possible. Generally, it is not
a good thing to make one big patch which changes many things.
Instead, segregate features and produce many patches.
* Use as late code as possible, for the original code. The CVS
repository always has the current version (*note Obtaining and
Building GRUB::).
* Write ChangeLog entries. *Note Change Logs: (standards)Change
Logs, if you don't know how to write ChangeLog.
* Make patches in unified diff format. `diff -urN' is appropriate in
most cases.
* Don't make patches reversely. Reverse patches are difficult to
read and use.
* Be careful enough of the license term and the copyright. Because
GRUB is under GNU General Public License, you may not steal code
from software whose license is incompatible against GPL. And, if
you copy code written by others, you must not ignore their
copyrights. Feel free to ask GRUB maintainers, whenever you are
not sure what you should do.
* If your patch is too large to send in e-mail, put it at somewhere
we can see. Usually, you shouldn't send e-mail over 20K.
Appendix E Copying This Manual
******************************
E.1 GNU Free Documentation License
==================================
Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a
free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is
instruction or reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You
accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position
regarding them.
The "Invariant Sections" are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this
License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.
A section "Entitled XYZ" means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according
to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow
the conditions in section 3.
You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document's license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the
title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in
other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download
using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.
B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you
from this requirement.
C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document's
license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title,
and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in
the previous sentence.
J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for
previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a
work that was published at least four years before the
Document itself, or if the original publisher of the version
it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section
titles.
M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled
"Endorsements" or to conflict in title with any Invariant
Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any
other section titles.
You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous
publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to
assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the
combined work.
In the combination, you must combine any sections Entitled
"History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the
documents in all other respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of
that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume of
a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual
works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half
of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket
the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the
original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the
actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other
attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
`http://www.gnu.org/copyleft/'.
Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the
Free Software Foundation.
E.1.1 ADDENDUM: How to use this License for your documents
----------------------------------------------------------
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:
Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.
If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.
Index
*****
blocklist: See 13.3.1. (line 2252)
boot: See 13.3.2. (line 2259)
bootp: See 13.2.1. (line 1862)
cat: See 13.3.3. (line 2267)
chainloader: See 13.3.4. (line 2276)
cmp: See 13.3.5. (line 2288)
color: See 13.2.2. (line 1874)
configfile: See 13.3.6. (line 2304)
current_drive: See D.3. (line 3498)
current_partition: See D.3. (line 3502)
current_slice: See D.3. (line 3505)
debug: See 13.3.7. (line 2310)
default: See 13.1.1. (line 1810)
device: See 13.2.3. (line 1935)
devread: See D.3. (line 3550)
dhcp: See 13.2.4. (line 1950)
disk_read_func: See D.3. (line 3541)
displayapm: See 13.3.8. (line 2319)
displaymem: See 13.3.9. (line 2325)
embed: See 13.3.10. (line 2338)
fallback: See 13.1.2. (line 1822)
FDL, GNU Free Documentation License: See E.1. (line 3716)
filemax: See D.3. (line 3538)
filepos: See D.3. (line 3531)
find: See 13.3.11. (line 2352)
fstest: See 13.3.12. (line 2361)
FSYS_BUF: See D.3. (line 3525)
geometry: See 13.3.13. (line 2374)
grub_read: See D.3. (line 3554)
halt: See 13.3.14. (line 2385)
help: See 13.3.15. (line 2393)
hiddenmenu: See 13.1.3. (line 1833)
hide: See 13.2.5. (line 1963)
ifconfig: See 13.2.6. (line 1973)
impsprobe: See 13.3.16. (line 2406)
initrd: See 13.3.17. (line 2415)
install: See 13.3.18. (line 2425)
ioprobe: See 13.3.19. (line 2483)
kernel: See 13.3.20. (line 2491)
lock: See 13.3.21. (line 2513)
makeactive: See 13.3.22. (line 2530)
map: See 13.3.23. (line 2537)
md5crypt: See 13.3.24. (line 2551)
module: See 13.3.25. (line 2559)
modulenounzip: See 13.3.26. (line 2570)
pager: See 13.2.7. (line 1983)
part_length: See D.3. (line 3517)
part_start: See D.3. (line 3514)
partnew: See 13.2.8. (line 1991)
parttype: See 13.2.9. (line 2000)
password: See 13.2.10. (line 2008)
pause: See 13.3.27. (line 2577)
print_a_completion: See D.3. (line 3558)
print_possibilities: See D.3. (line 3520)
quit: See 13.3.28. (line 2586)
rarp: See 13.2.11. (line 2023)
read: See 13.3.30. (line 2599)
reboot: See 13.3.29. (line 2593)
root: See 13.3.31. (line 2606)
rootnoverify: See 13.3.32. (line 2623)
saved_drive: See D.3. (line 3508)
saved_partition: See D.3. (line 3511)
savedefault: See 13.3.33. (line 2633)
serial: See 13.2.12. (line 2033)
setkey: See 13.2.13. (line 2055)
setup: See 13.3.34. (line 2665)
terminal: See 13.2.14. (line 2180)
terminfo: See 13.2.15. (line 2212)
testload: See 13.3.35. (line 2685)
testvbe: See 13.3.36. (line 2697)
tftpserver: See 13.2.16. (line 2225)
timeout: See 13.1.4. (line 1843)
title: See 13.1.5. (line 1850)
unhide: See 13.2.17. (line 2237)
uppermem: See 13.3.37. (line 2705)
vbeprobe: See 13.3.38. (line 2717)